
■I AT&T 999-802-000IS

Programmer’s Guide
AT&T Personal
Computer 6300
GW BASIC By Microsoft®

Written by
Agora Resources, Inc.
Lexington, MA

©1984 AT&T
©1983, 1984 Microsoft Corporation
All rights reserved

NOTICE

The information in this document is subject
to change without notice. AT&T assumes no
responsibility for any errors that may appear
in this document.

Microsoft® is a registered trademark
of Microsoft Corporation.

BASIC
Programmers

Guide

Contents

Introduction 1-1

Getting Started
Initialization Procedure 2-2
Modes of Operation 2-3
Keyboard 2-4
The GW BASIC Screen Editor
Using Your System as a Calculator 2-23
Entering a Program 2-26
Listing a Program 2-29
Saving a Program 2-30
Loading a Program 2-31
Executing a Program 2-32
Program Interrupts 2-37

Constants, Variables,
Expressions
and Operators
Constants 3-2
Variables 3-7
Expressions and Operators 3-14

BASIC
Programmers
Guide

Disk File Handling
Device Independent Input/Output 4-2
How MS-DOS Keeps Track of Your Files 4-3
File Specification 4-5
Commands for Program Files 4-18
Disk Data Files — Sequential
and Random Access 4-21

Graphics
Selecting the Screen Attributes
Text Mode
Graphics Mode

5-2
5-4
5-7

Asynchronous Communications
Opening Communications Files 6-2
Communication I/O Functions 6-3
An Exercise in Communication I/O 6-7

Reference
Commands, Statements,
and Functions with
Examples

BASIC
Programmers

Guide

Appendices

Error Codes and Error Messages

Glossary

Index

Tables
ASCII Codes A-3
Hexidecimal Conversion Tables A-10
Binary to Hexidecimal Conversion Table A-ll
Derived Functions A-12

Programming in GW BASIC -General
Syntax Conventions B-2
Line Format B-5
Character Set B-7
Reserved Words B-8

Advanced Features
Assembly Language Routines C-2
Event Trapping C-22

Conversion of Program to GW BASIC

Introduction

1-1

Introduction

INTRODUCTION

GW BASIC is the most extensive
implementation of BASIC available for
personal computers. It meets the requirements
of the ANSI standard for BASIC, and
supports many features rarely found in other
BASICs. It provides sophisticated string
handling, structured programming features,
and improved graphics.

GW BASIC gives you ease of use plus features
that make your personal computer perform at
its best.

UNIX is a trademark of AT&T Bell Laboratories.
MStm’DOS is a trademark of Microsoft Corporation.
Microsoft® is a registered trademark of Microsoft Corporation.

1-2

Introduction

MAJOR FEATURES

Some of the special features of GW BASIC are:

• UNIXtm style MStm-DOS interface for a user-
friendly operating environment

• Re-directable standard input and output

• Device communication commands to initialize
and communicate with peripheral devices

• Tree-structured disk directories

• Improved Disk I/O facilities for large files

• Advanced screen editing

• Enhanced Graphics commands

• User-defined Keyboard, Error, and Event
Trapping

• Precise error reporting with ERDEV and
ERDEV$

• Optional double precision transcendentals

• Precise control of memory allocation

• CALL statements with parameter passing

• Chaining with common variables to programs
larger than the available memory

• Optional declaration of variable names

1-3

Getting Started

• Initialization Procedure

• Modes of Operation

• Keyboard
• The GW BASIC Screen Editor

• Using Your System as a
Calculator

• Entering a Program

• Listing a Program

• Saving a Program

• Loading a Program
• Executing a Program

2-1

Getting Started

INITIALIZATION
PROCEDURE

To start GW BASIC, the MS-DOS operating
system must first be installed. When MS-DOS
has been installed and the system prompt:

A>

is displayed, enter the GW BASIC command:

GWBASIC

to load GW BASIC from the diskette inserted
in drive A into memory.

Upon loading, GW BASIC responds with:

GW BASIC 2.0
(C) Copyright Microsoft 1983
AT&T Personal Computer - GW BASIC Rel. 1.0
Copyright (C) by AT&T; 1984 - all rights reserved
XXXXX Bytes Free
Ok

• Insert a diskette containing your GW BASIC
programs and execute a program, or

• enter a GW BASIC program or immediate lines.

• To exit from GW BASIC and return to MS-
DOS, enter:

SYSTEM

This closes all data files before returning to
MS-DOS. Your GW BASIC program is no
longer in memory. MS-DOS remains resident.

2-2

Getting Started

MODES OF OPERATION

The GW BASIC Interpreter may be used in
either of two modes: direct mode or indirect
mode.

• In direct mode, statements and commands are
executed as they are entered. They are not
preceded by line numbers. After each direct
statement followed by a carriage return, the
screen will display the “Ok” prompt. Results of
arithmetic and logical operations may be
displayed immediately and stored for later use,
but the instructions themselves are lost after
execution. Direct mode is useful for debugging
and for using the GW BASIC Interpreter as a
calculator for quick computations that do not
require a complete program.

Example

Ok
PRINT 45+3
48

Ok

Example

Indirect mode is used for entering programs.
Program lines are preceded by line numbers
and are stored in memory. The program stored
in memory is executed by entering the RUN
command.

Ok
10 PRINT 45+3
RUN
48

Ok

2-3

Getting Started

KEYBOARD

The Keyboard is divided into three sections:

• Ten function keys, named Fl through F10 on
the left-hand side of the keyboard.

• The standard typewriter keyboard in the
center, used to enter letters, numbers, special
characters and control characters.

• The numeric keypad on the right-hand side of
the keyboard, used to enter numbers, numeric
operators and the Screen Editor commands.

2-4

Getting Started

FUNCTION KEYS

There are 10 function keys on the keyboard.

These function keys can be tailored to the
user’s needs using the KEY and ON KEY
statements.

The KEY statement can be used to assign a
specific command or sequence of characters to
a function key, other than the pre-assigned
standard commands. The ON KEY statement
can be used to generate program interrupts via
a specified function key.

Refer to the Reference section for further
details.

2-5

Getting Started

TYPEWRITER KEYBOARD

The standard typewriter keyboard is used to
enter letters, numbers, special characters, and
control characters.

Shift Keys

If you want to enter upper case letters or the
upper symbol on those keys containing two
symbols, hold down one of the two t keys and
press the corresponding key.

From now on we shall always refer to the t
keys as SHIFT keys by convention.

Carriage Return Key

The carriage return key is identified by the
symbol J
By convention we shall refer to this key as the
CR key.

You must press CR to end a GW BASIC line
and send it to the system for processing.

Shift Lock for Letters

You can enable or disable Shift Lock for letters
(A-Z) by pressing CAPS LOCK.

The CAPS LOCK key is similar to a
typewriter Shift Lock Key, but it only gives
you uppercase letters, and will not give you the
upper symbols on the numeric or other keys.

2-6

Getting Started

Backspace

The backspace key *- moves the cursor one
position to the left, erasing the last character
you have typed.

To move the cursor to the left without erasing
any characters, you should use the Cursor Left
Key located on the numeric keypad.

Control Characters

You can generate control characters by
holding down the CTRL or ALT key while
pressing another key. GW BASIC recognizes a
number of control characters.

2-7

Getting Started

CTRL-BREAK

1. To interrupt the program at the following GW BASIC
instruction and return to GW BASIC Command Level.

2. To cancel automatic line numbering mode while entering
a program.

3. To return to Command Level without saving any changes
that you made to the current line.

CTRL-G

Sounds the bell.

CTRL-NUM LOCK

Causes the system to ‘pause’ so as to temporarily halt printing
or program listing. The pause continues until you press any key
(except SHIFT, CTRL or ALT.)

CTRL-T

Scrolls the function key display horizontally across the screen
(on the 25th screen line), when the width is 40. When the width
is 80, it toggles the Function Key display ON and OFF.

2-8

Getting Started

CTRL-ALT-DEL
Performs a System Reset by holding down the CTRL and ALT
keys, and then pressing DEL.

CTRL-PRTSC
All text sent to the screen is also sent to the system printer. A
second CTRL-PRTSC will stop printing.
If you press PRTSC while holding down SHIFT MS-DOS will
make a single printed copy of the entire display screen.

CTRL-L
Outputs a formfeed character. It has the same function as the
CLS statement, i.e., it clears the screen or the current graphics
viewport (if a viewport has been defined.)

CTRL-Z
Sets an end of file condition (see the “OPEN COM Statement”
in the Reference section.)

2-9

Getting Started

Other control characters are described in the
subsection entitled “Special Screen Editor
Keys” later in this chapter.

Direct Entry of GW BASIC Keywords

You can type a GW BASIC Keyword by
holding down the ALT key while pressing one
of the alphabetic keys (A - Z). Keywords
associated with each letter are listed below.

**** unusej keys

A • AUTO N - NEXT
B - BSAVE 0 - OPEN
C - COLOR P - PRINT
D - DELETE Q - ****
E • ELSE R - RUN
F - FOR S - SCREEN
G - GOTO T - THEN
H - HEX$ U - USING
I - INPUT V - VAL
J - **** W- WIDTH
K - KEY X - XOR
L - LOCATE Y - ****
M- MERGE z - ****

2-10

Getting Started

NUMERIC KEYPAD

A group of 15 keys are at the right-hand side of
the keyboard. It is arranged much like a
standard calculator’s keypad and is called
“numeric keypad.” It includes not only the
number 0 through 9, the decimal point, the
plus (+) and minus (-) keys, but also cursor
movement keys, PGUP, PGDN, HOME,
NUM LOCK, SCROLL LOCK, BREAK,
END, INS, DEL, etc.

Note that some keys like SCROLL LOCK,
PGUP, and PGDN are not used by GW
BASIC, but they may be assigned meanings
within a program.

Number Lock State

You can press the NUM LOCK key to shift
the numeric keypad into upper-case. This
mode provides the numbers 0 through 9 and
the decimal point. (Holding down one of the
two SHIFT keys produces the corresponding
lower-case keys in this mode.) To return to
lower-case, press NUM LOCK once again.

2-11

Getting Started

THE GW BASIC
SCREEN EDITOR

All text entered while GW BASIC is at
command level is processed by the GW BASIC
Editor. This is a “screen line editor” which
allows you to change a line anywhere on the
screen (only one line at a time). Changes are
only registered when you press CR on that
line.

SPECIAL SCREEN EDITOR KEYS

The GW BASIC Editor recognizes 9 numeric
Keypad Keys, the Backspace Key, and the
CTRL Key to move the cursor, insert or delete
characters.

The Keys and their functions are listed below.

HOME
Positions the cursor in the top left hand corner of the screen.

CTRL-HOME
Clears the screen and moves the cursor to the “Home”
position.

t
Moves the cursor up one line.

I
Moves the cursor one position down.

Moves the cursor one position left. If the cursor is moved
beyond the left edge of the screen, it appears at the right side
of the screen on the preceding line.

Moves the cursor one position right. If the cursor is moved
beyond the right edge of the screen, it appears at the left side
of the screen on the following line.

2-12

Getting Started

CTRL-
Moves the cursor to the beginning of the following word, i.e.,
to the next character to the right of the cursor in the set [A..Z]
or [a..z] or [0..9].
For example, in the following line:

30 IF L<=0 THEN 20

Thecursor is under the letter L. If you press CTRL— ,
the cursor will move to the beginning of the next word,
which is 0:

30 IF L<=0 THEN 20

If you press " CTRL — again, the cursor will move to the
next word, which is THEN:

30 IF L<=0 THEN 20

CTRL -
Moves the cursor to beginning of the preceding word, i.e., to
the first character to the left of the cursor which is preceded
by a blank or a special character.
For example:

30 IF L<=0 THEN 20

The cursor is under the letter T. If you press CTRL — the
cursor will move to 0. Pressing CTRL — again, it will move
to L.

END
Moves the cursor from its current position to the end of the
logical line. Subsequent characters are appended to the line.

CTRL END
Erases from the current cursor position to the end of the
logical line, i.e., until the carriage return is found.

2-13

Getting Started

INS
Switches into or out of Insert Mode. If Insert Mode is off
(Overwrite Mode on), then it turns Insert Mode on. If Insert
Mode is on, then it turns it off (sets Overwrite Mode). The
Insert Mode cursor is a half-height blink-ing block (in Text
Mode) and is a blinking triangle to the left of the character (in
Graphics Mode).

Overwrite mode is indicated by a different cursor, which is a
slow-blinking under-line. In Insert Mode, the characters im
mediately above, together with those following the cursor,
move to the right as characters are inserted at the current
cursor position. Line folding is observed; that is, as charac
ters disappear off the right side of the screen, they return on
the left on the following line.

When in Overwrite Mode, characters typed will replace
existing characters on the line.

Insert Mode is turned off when you press the INS key again,
or if you press any of the cursor movement keys, or CR.

2-14

Getting Started

- I TAB
When out of Insert Mode, pressing — | moves the cursor over
characters until the next tab stop is reached. Tab stops are
set at every 8 character positions; that is at positions 1,9,17,
etc.
For example, suppose we have the line:

20 INPUT “Length”; L

If you press the — | key, the cursor will move to the 17th
position as shown:

20 INPUT “Length^; L

When in Insert Mode, pressing -* | causes blanks to be
inserted from the current cursor position to the next tab stop.
Line folding is observed as explained under INS.
For example, suppose we have the line:

20 INPUT “Length”; L

Blanks are inserted up to the 17th position by pressing the
INS key and then the — | key.

20 INPUT “ Length”; L

DEL
Deletes the character at the current cursor position. All
characters which follow the deleted character shift one
position left. If a logical line extends beyond one physical
line, characters on subsequent lines shift left one position to
fill in the previous space, and the character in the first
column of each subsequent line moves up to the end of the
preceding line.

- BACKSPACE
Causes the last character typed to be deleted, i.e., on the
character to the left of the cursor. All characters to the right
of the deleted character shift left one position. Subsequent
characters and lines within the current logical line move up
as with the DEL key.

2-15

Getting Started

CTRL CR LINE FEED
Causes subsequent text to start automatically on the next
screen line.

ESC DELETE LINE
The entire logical line containing the cursor is cleared. The
line is not entered for processing. If it is a program line, it is
not erased from the program in memory.

CTRL BREAK
Returns to Command Level, without saving any modi
fications that were made to the current line being edited.
Unlike ESC, it does not erase the line from the screen.

2-16

Getting Started

CORRECTING THE
CURRENT LINE

All text entered at GW BASIC Command
Level is processed by the Screen Editor. You
can therefore use any of the Special Screen
Editor Keys.

GW BASIC remains at Command Level after
the prompt Ok and until a RUN command is
received.

Character Modification
If you make a mistake while entering a line
then proceed as follows:

1 You discover the error. For example, suppose you have
typed:

RUN “K,PROGR_

when you should have entered

RUN “A:PROGR_

Use Cursor-Left, or other cursor movement keys, to move the
cursor to the appropriate position:

RUN “K,PROGR

3 Type the correct characters over the wrong ones:

RUN “A.PROGR

4 Move the cursor to the end of the line using Cursor Right or
END keys:

RUN “A:PROGR_

5 Continue typing if the line is not finished:

RUN “A:PROGRAM11”

Enter CR to pass the line to GW BASIC. In this case the
specified program is loaded from the diskette inserted in
drive A and run.

2-17

Getting Started

Character Insertion

If you accidentally omit characters in the line
you are entering, then proceed as follows:

1 You notice the error.
Suppose you entered:

10 FO K>1 TO_

instead of:

10 FOR K=1 TO—

2 Use Cursor-Left, or other cursor movement keys, to move the
cursor to the appropriate position:

10 FO_ K=1 TO

3 Press INS and type the letter R:

10FOR-K-1 TO
Note that, entering Insert Mode, the cursor becomes a half
height block.

4 Press INS again to return to Overwrite Mode and Cursor-
Right or END to move the cursor to the end of the line:
10 FOR K=1 TO_

2-18

Getting Started

Character Deletion
If you accidentally type an extra character in
the line you are entering, then proceed as
follows:

1 You discover the error.
For example, suppose you typed:

GOTTO—

instead of:

GOTO—

2 To erase the extra T, press Cursor Left, or other cursor
movement keys, to move the cursor to the appropriate
position:

GOTTO

3 Press DEL:

GOTO

4 Move the cursor using Cursor Right:

GOTO—

5 Continue typing

GOTO 1000—

Deleting Part of a Line
To erase a line from the current cursor
position, press CTRL END

Deleting an Entire Line
To cancel the line you are entering, press ESC
anywhere in the line. It is not necessary to
press CR

2-19

Getting Started

MODIFYING
PROGRAM LINES

Any line of text beginning with a number (0 to
65529) is considered to be a ‘program line’.
Suppose you have entered a program, i.e. a
sequence of program lines, that you want to
modify:

2-20

Getting Started

• To add a new line to your program, enter a
valid line number followed by at least one non
blank character, followed by CR

• To replace an existing line, enter a line
number that matches an existing one, followed
by the contents of the new line. The new line
will replace the existing one.

• To delete a line enter a line with the same line
number as the line to be deleted, followed by
CR. An “Undefined line number” error is
returned if an attempt is made to delete a line
which does not exist.

Note: ESC should not be used to delete
program lines, since this erases from the
screen only, and not from the program in
memory.

• To delete the program resident in memory,
enter a NEW command (see the Reference
Section.)

• To delete the program resident in memory,
enter a NEW command (see the Reference
Section).

• To modify a program line which is already
displayed on the screen, move the cursor to the
appropriate position (by the cursor movement
keys); modify the line using any of the
techniques described above to change, delete
or insert characters to the line;
press CR to pass the modified line to
GW BASIC.

2-21

Getting Started

• To modify a program line which is not
displayed on the screen, use the EDIT
command (see the Reference Section) to
display the line, or the LIST command (see the
Reference Section) to display a group of lines
including the line you want to modify, move
the cursor to the appropriate position, modify
the line, and press CR.
Note: You can edit any line as long as it is
visible on the screen. Once an immediate line
has been sent to the system pressing CR, there
is no way to edit it; this is not the case with
program lines, as they may always be recalled
for editing to the screen.
Remarks
No modifications are made within the
program until CR is entered. It is sometimes
more practical to move around the screen
making corrections to several lines and then
return to the first line changed and strike CR
at the beginning of each line, thereby storing
the modified lines in the program.

It is not necessary to move the cursor to the
end of the logical line before typing the
carriage return. The Screen Editor remembers
where each logical line ends and transfers the
whole line even if the carriage return is typed
at the beginning of the line.

The preceding modifications only change the
program in memory. In order to save these
modifications permanently, use the SAVE
command before entering a NEW command or
leaving GW BASIC (see the SAVE and NEW
commands in the Reference Section.)

2-22

Getting Started

USING YOUR SYSTEM
AS A CALCULATOR

You can use your Personal Computer as a
calculator for quick computation and for
debugging purposes.

When you are in GW BASIC, and the Ok
prompt is on the screen, you can enter PRINT
(or simply ?), followed by any expression, and
CR . The expression is evaluated and its value
displayed. You can also enter LET, followed
by any variable name, the assignment
operator (=), any expression and CR. The
value is assigned to the specified variable. You
can use the variable to represent that value in
successive computations. The keyword LET is
optional; you can begin the line simply using
the variable name.

2-23

Getting Started

CALCULATOR EXAMPLES

PRINT 3
The constant 3 is displayed.

PRINT 2+3
The expression 2+3 is evaluated, and its value
(5) is displayed.

LET A=15.21
The constant 15.21 is assigned to the variable
A. You can use A in successive computations
to represent this value.

?A-1
The expression A-l is evaluated, and its value
(14.21) is displayed.

Note: ? is equivalent to PRINT

B=2.3
The constant 2.3 is assigned to the variable B.
The keyword LET is optional; you may begin
with a variable name.

2-24

Getting Started

?A--B
The expression A*B is evaluated. Its value
(34.983) is displayed.

?AwB-40
the expression A*B-40 is evaluated, and its
value (-5.017002) is displayed.

Note: If a value is negative, the minus sign is
displayed, if a value is positive, no sign is
displayed.

2-25

Getting Started

ENTERING A PROGRAM

A GW BASIC program consists of a series of
statements. A statement is a complete
instruction in GW BASIC, telling your
computer to perform specific operations.

You can enter either one or several statements
per line. In the latter case, each statement
must be separated from the last by a colon (:).

Each line in a GW BASIC program begins
with a line number: an integer greater than or
equal to 0 and less than or equal to 65529. The
line ends when you press CR.

A GW BASIC line may contain a maximum of
255 characters including the carriage return.
Any extra characters will be truncated when
you enter CR.

When you are in GW BASIC, and the Ok
prompt is on the screen, you can enter a
program.

2-26

Getting Started

Example

Enter:

NEW

This clears memory.

Then enter:

10 REM RECTANGLE1
20 INPUT “Length”;!.
30 IF L=0 THEN 20
40 INPUT “Width”;W
50 IF W<=0 THEN 40
60 LET AREA=L-::-W
70 PRINT “Area=”;AREA;“ L=”;L;“ W=”;W
80 GOTO 20
90 END

Getting Started

It is conventional to use an interval of 10
between each line number. This allows you to
modify the program simply by inserting
statements between existing lines.

The above statements form a complete program
that solves a very simple problem. The
problem is to find the area of a rectangle by
entering the values of length and width via
the keyboard. It has been selected both for its
simplicity and to illustrate a variety of GW
BASIC features. Other more concise solutions
exist.

AUTOMATIC LINE NUMBERING

You can use the AUTO command (see the
Reference Section), to generate a line number
automatically each time you press CR by
pressing CTRL BREAK.

2-28

Getting Started

LISTING A PROGRAM

Once a program is in main memory it can be
displayed or listed. To list your program, enter
either the LIST command (the listing will
appear on the screen) or, if a printer is
connected, the LLIST command (the listing will
be printed out).

The LIST and LLIST commands edit your
program by converting to upper case letters
any keywords, variable names, and function
names and to PRINT any question mark (?)
used instead of PRINT. Statements are
ordered in ascending line number sequence,
even though you may have entered them in a
different order.

To list our sample program on the screen
enter:

LIST

The screen display:

10 REM RECTANGLE1
20 INPUT “Length”;L
30 IF L<=OTHEN 20
40 INPUT “Width”;W
50 IF W<=0 THEN 40
60 LET AREA=LwW
70 PRINT “Area=”;AREA;“ L=”;L;“ W=”;IA/
80 GOTO 20
90 END
Ok

Note that at the end of a listing your system
enters command level and displays the Ok
prompt; the program can now be edited as
required.

2-29

Getting Started

SAVING A PROGRAM

A program is kept in memory as long as your
computer is switched on and GW BASIC is
running and LOAD is not executed. As soon as
you turn off your computer or do a system reset,
or exit GW BASIC with a system command or
LOAD another program, your program is lost.
If you want to retain your newly written
program for future use, then you must enter a
SAVE command to store the program on a
disk.

You should save the current program (i.e. the
program presently resident in the main
memory) on the following occasions:

• before you turn the machine off or do a system
reset

• before entering a new program from the
keyboard

• before loading another program in from disk

• before returning to MS-DOS by entering a
SYSTEM command

• to replace the old version of your program with
one you’ve just edited

2-30

Getting Started

LOADING A PROGRAM

If the program you want to enter into the main
memory resides on a disk, you must issue a
LOAD command. LOAD deletes all variables
and program lines currently residing in
memory. Before entering a LOAD command
save the current program if you want to use it
again, unless you already have a copy.

To load a program file from a disk, you must
specify the drive before the file name, unless
the file resides on the default drive. For
example:

LOAD “B:ROOT1”

Loads the program if ROOT1 resides on the
diskette inserted in drive B.

If you specify the R option, all open data files
are kept open and the program is run after it is
LOADed. For example:

LOAD “B:ROOTT’,R

If you do not specify the R option, LOAD
closes any data files that may be open.

2-31

Getting Started

EXECUTING A PROGRAM

Once a program is in main memory, it can be
executed (or “run”, as this is frequently called).
To tell your system to execute a program, you
must enter a RUN command (or a LOAD with
the option R).

The RUN command runs the current program,
i.e. the program currently in memory, or loads
a program from a disk and runs it (if you enter
a file specifier after the keyword RUN). For
example:

RUN “B:RECTANGLE1”

Note that a file specifier is a string expression
or, in particular, a string constant. If it is a
string constant as in the example above it
must be enclosed within quotation marks (”).

2-32

Getting Started

If you specify the R option all open data files
are kept open, thus you can re-use these files in
the new program without having to open them
again.

Before entering a RUN filespec (or RUN
filespec,R), save your current program (unless
you already have a copy).

GW BASIC statements are executed in line
number sequence, unless a control statement
(GOTO, ON...GOTO, IF...GOTO...ELSE,
IF...THEN...ELSE, FOR/NEXT,
WHILE/WEND) or a subroutine call
statement (GOSUB, ON...GOSUB) dictates
otherwise.

2-33

Getting Started

RUNNING A SAMPLE PROGRAM

Let us run our sample program. Let us suppose
it is already in memory, entered through the
keyboard or loaded from disk by the LOAD
command.

Enter:

LIST

10 REM RECTANGLE*!
20 INPUT “Length”;L
30 IF L OTHEN 20
40 INPUT “Width”;W
50 IF W<=0 THEN 40
60 LET AREA=L-::-W
70 PRINT “Area=”;AREA;“
80 GOTO 20

L=”;L;“ W=”;W

90 END
Ok

to check that this program is in main memory.
The listing will appear on the screen. At the
end of the listing, when Ok appears on the
screen, enter:

RUN

2-34

Getting Started

Enter values for length and width in response
to the program’s prompts.

For example:

Length? 3.5

Width? 4.2

Area= 14.7 L= 3.5 W= 4.2

Length? -7.3

Length? 7.3

Width? 1.3Q

?Redo from start

Width? 1.32

Area= 9.636 L= 7.3 W= 1.32

Length? C

Break in 20

Ok

2-35

Getting Started

If you enter a negative value for W, statement
40 is executed again, as statement 50 returns
control to statement Q for W) the system
displays an error message:

?Redo from start

and you must re-enter the value. This program
continues to run until you press CTRL
BREAK to stop execution. Your system
displays a “Break in nnnnn” message and
returns to Command Level. To resume
execution enter:

CONT

2-36

Getting Started

PROGRAM INTERRUPTS

Three types of program interrupts are possible:

• Manual interrupts

• Automatic interrupts

• Programmable interrupts

If you press CTRL BREAK, (manual
interrupt), or a STOP, or an END statement is
executed (programmed interrupt), then the
program is interrupted, GW BASIC enters
Command Level and displays OK. CTRL
BREAK and STOP do not close any data file
and display a “Break in nnnnn” message.
END closes all data files and does not display
a “Break in nnnn” message.

In any case you can resume execution by
entering a CONT command. You can display
program variables (by immediate PRINT or
PRINT USING statements) or change their
values (by immediate LET or SWAP
statements). You can also display program
lines by an EDIT or LIST command, and
modify them.

If you modify lines, you cannot continue
execution via a CONT command. You can
only rerun the program by entering RUN.

If a Syntax error is found (automatic interrupt),
then the program is interrupted, GW BASIC
displays the error message at the line that
caused the error, positioning the cursor under
the first digit of the line number.

2-37

Getting Started

You can modify the line, and then rerun the
program by entering RUN. You cannot
continue execution by entering CONT.

If you want to examine the contents of some
variables before making any modifications
you should press CTRL BREAK to return to
Command Level. After examining the
contents of the variables you can edit the line
and rerun the program.
For example:

10 A=2$6
RUN

?Syntax Error in 10

10 A=2$6

If an error (other than a Syntax error) is found
(automatic interrupt), the program is
interrupted, GW BASIC displays the error
message, enters Command Level and displays
OK.

You can either display program variables or
display program lines by an EDIT or LIST
command, and then modify them.

You cannot continue execution by entering a
CONT command, but you can rerun the
program by entering RUN.

2-38

Getting Started

For example, running a program which
contains:

100 FOR K=

will cause:

Massing operand in 100

If an error occurs and the error trapping is
enabled (programmed interrupt), program
execution is transferred to the line specified by
the ON ERROR statement.

An error trapping routine should check for all
the particular errors that the user wishes to
recover from, and should specify the course of
action to be taken in each case.

This involves either correcting the error, and
resuming execution at a specified statement or
returning to Command Level.

Example

10 ON ERROR GOTO 100
20 INPUT “WHAT IS YOUR BET”;B
30 IF B>5000 THEN ERROR 200

2-39

Constants,
Variables,

Expressions
and Operators

• Constants

• Variables

• Expressions and Operators

3-1

Constants, Variables,
Expressions and Operators

CONSTANTS

Constants are the values that GW BASIC uses
during program execution. There are two types
of constants: string and numeric.

A string constant is a sequence of up to 255
alphanumeric characters enclosed in double
quotation marks.

Examples:

“READY”
“$80”
“acceleration rate”

Numeric constants are positive or negative
numbers. GW BASIC numeric constants
cannot contain commas. There are five types
of numeric constants:

3-2

Constants, Variables,
Expressons and Operators

• Integer constants
Whole numbers between -32768 and 32767.
Integer constants do not contain decimal
points.

• Fixed-point constants
Positive or negative real numbers, i.e.,
numbers that contain decimal points.

• Floating-point constants
Positive or negative numbers represented in
exponential form (similar to scientific
notation). A floating-point constant consists of
an optionally signed integer or fixed-point
number (the mantissa) followed by the letter E
and an optionally signed integer (the
exponent.) The range for floating-point
constants is IO-38 to 10+38.

Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating-point constants are
denoted by the letter D instead of E. See later
in this chapter.)

3-3

Constants, Variables,
Expressions and Operators

• Hex constants
Hexadecimal numbers denoted by the prefix
&H.

Examples:

&H76
&H32F
&HFFAA

• Octal constants
Octal numbers denoted by the prefix &O or &.

Examples:

&0347
&1234

3-4

Constants, Variables,
Expressions and Operators

SINGLE AND DOUBLE
PRECISION FOR

NUMERIC CONSTANTS

Numeric constants may be either single
precision or double precision numbers. Single
precision numeric constants are stored with 7
digits of precision, and printed with up to 6
digits of precision. Double precision numeric
constants are stored with 17 digits of precision
and printed with up to 16 digits.

A single precision constant is any numeric
constant that has one of the following
characteristics:

• Seven or fewer digits and a decimal point.

• Exponential form using E.

• A trailing exclamation point (!).

3-5

Constants, Variables,
Expressions and Operators

Example

46.8
-1.09E-06
3489.0
22.5!

A double precision constant is any numeric
constant that has one of the following
characteristics:

• Eight or more digits and a decimal point.

• Exponential form using D.

• A trailing number sign (#).

Examples:

345692811
-1.094320-06
3489.0#
7654321.1234

3-6

Constants, Variables,
Expressions and Operators

VARIABLES

Variables are names used to represent values
used in a GW BASIC program. The value of a
variable may be assigned explicitly by the
programmer, or it may be assigned as the
result of calculations in the program. Before a
variable is assigned a value, its value is
assumed to be zero.

VARIABLE NAMES AND
DECLARATION CHARACTERS

GW BASIC variable names may be any
length. Up to 40 characters are significant.
Variable names can contain letters, numbers,
and the decimal point. However, the first
character must be a letter. Special type
declaration characters are also allowed (see
below).

A variable name may not be a reserved word,
but embedded reserved words are allowed.
Reserved words include all GW BASIC
commands, statements, function names, and
operator names. If a variable begins with FN,
it is assumed to be a call to a user-defined
function. Variables may represent either a
numeric value or a string. String variable
names are written with a dollar sign ($) as the
last character. For example:

AS = “SALES REPORT”

The dollar sign is a variable type declaration
character; that is, it “declares” that the
variable will represent a string.

3-7

Constants, Variables,
Expressions and Operators

%

!

#

PI#

MINIMUM!

LIMITo/o

N$

ABC

VARIABLES

Numeric variable names may declare integer,
single precision, or double precision values.
The type declaration characters for these
variable names are as follows:

Integer variable

Single precision variable

Double precision variable

The default type for a numeric variable name
is single precision. Examples of GW BASIC
variable names:

Declares a double precision value.

Declares a single precision value.

Declares an integer value.

Declares a string value.

Represents a single precision value.

There is a second method by which variable
types may be declared. The GW BASIC
statements DEFINT, DEFSTR, DEFSNG, and
DEFDBL may be included in a program to
declare the types for certain variable names.
These statements are described in detail in the
Reference Section.

3-8

Constants, Variables,
Expressions and Operators

ARRAY VARIABLES

An array is a group or table of values
referenced by the same variable name. Each
element in an array is referenced by an array
variable that is subscripted with an integer or
an integer expression. An array variable name
has as many subscripts as there are
dimensions in the array. For example V(10)
would reference a value in a one-dimension
array, T(l,4) would reference a value in a two-
dimension array, and so on. The maximum
number of dimensions for an array is 255. The
maximum number of elements per dimension
is 32,767. Both these values are also limited by
the memory size of your system.

Wherever a variable name can be entered in a
GW BASIC program line, an array element
can also be entered. From now on, when
speaking of a variable we shall mean either a
simple variable or an array element.

3-9

Constants, Variables,
Expressions and Operators

MEMORY REQUIREMENTS

The number of bytes required by strings,
variables and arrays is listed below.

Variable Type
Integer
Single Precision
Double Precision

Bytes
2
4
8

Array Type
Integer
Single Precision
Double Precision

Bytes
2 per element
4 per element
8 per element

Strings
3 bytes overhead plus the present contents of the string.

3-10

Constants, Variables,
Expressions and Operators

TYPE CONVERSION

When necessary, GW BASIC will convert a
numeric constant from one type to another.
The following rules and examples should be
observed.

If a numeric constant of one type is set equal
to a numeric variable of a different type, the
number will be stored as the type declared in
the variable name. (If a string variable is set
equal to a numeric value or vice versa, a “Type
mismatch” error occurs.)

Example:

10 A/23.42
20 PRINT A°lo
RUN
23
Ok

During expression evaluation, all of the
operands in an arithmetic or relational
operation are converted to the same degree of
precision, i.e., that of the most precise operand.
Also, the result of an arithmetic operation is
returned to this degree of precision.

3-11

Constants, Variables,
Expressions and Operators

Examples:

10 D#=6#/7
20 PRINT 0#
RUN
.8571428571428571
Ok

The arithmetic is performed in double
precision and the result is returned in D# as a
double precision value.

10 D=6#/7
20 PRINT D
RUN
.8571429
Ok

The arithmetic is performed in double
precision and the result is returned to D (single
precision variable), rounded, and printed as a
single precision value.

• Logical operators convert their operands to
integers and return an integer result.
Operands must be in the range -32768 to 32767
or an “Overflow” error occurs. A full
description of Logical Operators follows later
in this chapter.

3-12

Constants, Variables,
Expressions and Operators

When a floating-point value is converted to an
integer, the fractional portion is rounded.

Example:

10 C°/o=55.88
20 PRINT C°lo
RUN
56
Ok

If a double precision variable is assigned a
single precision value, only the first seven
digits (rounded) of the converted number will
be valid. This is because only seven digits of
accuracy were supplied with the single
precision value. The absolute value of the
difference between the printed double
precision number and the original single
precision value will be less than 6.3E-8 times
the original single precision value.

Example:

10 A2.04
20 B#=A
30 PRINT A;B#
RUN
2.04 2.039999961853027
Ok

3-13

Constants, Variables,
Expressions and Operators

EXPRESSIONS
AND OPERATORS

An expression may be a string or numeric
constant, a variable, or a combination of
constants and variables with operators. An
expression always produces a single value.

Operators perform mathematical or logical
operations on values. The GW BASIC
operators may be divided into four categories

• Arithmetic

• Relational

• Logical

• Functional

Each category is described in the following
subsections.

3-14

Constants, Variables,
Expressions and Operators

ARITHMETIC OPERATORS

The arithmetic operators, in order of
precedence, are as follows:

Operator

MOD

Operation
Exponentiation
Negation
Multiplication,
Floatingpoint Division
Integer Division
Modulus Arithmetic
Addition, Subtraction

Sample Expression
X~ Y
-X
X*Y
x/y

X MOD Y
X+Y, X-Y

To change the order in which the operations are
performed, use parentheses. Operations within
parentheses are performed first. Within the
parentheses, the usual order of operations is
maintained.

3-15

Constants, Variables,
Expressions and Operators

Some sample algebraic expressions follow,
together with their GW BASIC counterparts.

example.

Algebraic
Expression

GW BASIC
Expression

X+2Y X+Y*2

XX ■ z X-Y/Z

XY
Z X*Y/Z

X+Y
Z (X+Y)/Z

(X2)’ (X'2)‘Y

z
xr X"(Y"Z)

X(-Y) X*(-Y)

Note:
Two consecutive operators must be separated
by parentheses, as shown in the X*(-Y)

3-16

Constants, Variables,
Expressions and Operators

INTEGER DIVISION
AND MODULUS

ARITHMETIC

Two additional operators are available in
GW BASIC: integer division and modulus
arithmetic.

Integer division is denoted by the backslash
(\). The operands are rounded to integers
before the division is performed, and the
quotient is truncated to an integer. The
operands must be within the range -32768 to
32767.

Example

x=10\4
PRINT x

2
Ok

Integer division follows multiplication and
floating-point division in order of precedence.

Modulus arithmetic is denoted by the operator
MOD. Modulus arithmetic yields the integer
value that is the remainder of an integer
division.

Example

PRINT 10.4 MOD 4
2

Ok
PRINT 25.68 MOD 6.99

5
Ok

Modulus arithmetic follows integer division in
order of precedence.

3-17

Constants, Variables,
Expressions and Operators

OVERFLOW

If, during the evaluation of an expression,
division by zero is encountered, the “Division
by zero” error message is displayed, machine
infinity (the largest number that can be
represented in floating-point format) with the
sign of the numerator is supplied as the result
of the division, and execution continues. If the
evaluation of an exponentiation operator
results in zero being raised to a negative
power, the “Division by zero” error message
again is displayed, positive machine infinity is
supplied as the result of the exponentiation,
and execution continues.

If overflow occurs, the “Overflow” error
message is displayed, machine infinity with
the algebraically correct sign is supplied as
the result, and execution continues.

3-18

Constants, Variables,
Expressions and Operators

RELATIONAL OPERATORS

Relational operators are used to compare two
values. The result of the comparison is either
“true” (-1) or “false” (0). This result may then
be used to make a decision regarding program
flow. (See “IF” statements, in the Reference
section).

The relational operators are:

Operator Relation Tested
Equality
Inequality
Less than
Greater than
Less than or equal to
Greater than or equal to

Example

3-19

Constants, Variables,
Expressions and Operators

(The equal sign is also used to assign a value
to a variable. See “LET” Statement in the
Reference Section.)

When arithmetic and relational operators are
combined in one expression, the arithmetic
operation is always performed first. For
example, the expression

X+Y<(T-1)/Z

it is true if the value of X plus Y is less than
the value of T-l divided by Z.

More examples:

320 IF SIl\l(X) < 0 GOTO 1000
400 IF I MOD JOO THEN K=K+1

3-20

Constants, Variables,
Expressions and Operators

LOGICAL OPERATORS

Logical operators perform tests on multiple
relations, bit manipulation, or Boolean
operations. The logical operator returns a
result which is either “true” (not zero) or
“false” (zero). In an expression, logical
operations are performed after arithmetic and
relational operations. The outcome of a logical
operation is determined as shown below.

The operators are listed in order of precedence.

X
1

NOT X
0

X Y XXOR Y
1 1 0

0 1 1 0 1
0 1
0 0 0

X__ Y X AND Y X Y XEQVY
1 1 1 1 1

0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 J

X Y XOR Y X Y X IMP Y
1 1 1 1 1 1
1 0 1 0 0
0 1 1 0
0 0 0 0 0 1

3-21

Constants, Variables,
Expressions and Operators

Just as the relational operators can be used to
make decisions regarding program flow,
logical operators can connect two or more
relations and return a true or false value to be
used in a subsequent decision (see “IF”
statements in the Reference Section.)

Example

IF D<200 AND F<4 THEN 80
IF l>10 OR KCOTHEN 50
IF NOT PTHEN 100

Logical operators work by converting their
operands to 16-bit, signed, two’s complement
integers in the range -32768 to 32767. (If the
operands are not in this range, an error
results.) If both operands are supplied as 0 or
-1, logical operators return 0 or -1. The given
operation is performed on these integers bit-
by-bit; i.e., each bit of the result is determined
by the corresponding bits in the two operands.

3-22

Constants, Variables,
Expressions and Operators

Thus, it is possible to use logical operators to
test bytes for a particular bit pattern. For
instance, the AND operator may be used to
“mask” all but one of the bits of a status byte
at a machine I/O port. The OR operator may
be used to “merge” two bytes to create a
particular binary value. The following
examples will help demonstrate how the
logical operators work.

Decimal Binary

63 AND 16=16 mill AND 010000=010000
15 AND 14=14 001111 AND 001110=001110
-1 AND 8=8 1111111111111111 AND 001000=001000
4 OR 2=6 000100 AND 000010=000110
10 OR 10=10 001010 OR 001010=001010
-1 OR -2=-l 1111111111111111 OR 1111111111111110— 1111111111111111

The bit complement of sixteen
zeros is sixteen ones, which is
the two’s complement represen
tation of -1.

NOT X=-(X+1) The two’s complement of any
integer is the bit complement
plus one.

3-23

Constants, Variables,
Expressions and Operators

FUNCTIONAL OPERATORS

When a function is used in an expression, it
calls a predetermined operation that is to be
performed on an operand. GW BASIC has
“intrinsic” functions that reside in the system,
such as SQR (square root) or SIN (sine). All
GW BASIC intrinsic functions are described in
the Reference Section.

GW BASIC also allows “user-defined”
functions that are written by the programmer.
(See “DEF FN” Statement in the Reference
Section).

STRING OPERATORS

Strings may be concatenated by using +.

Example

10 A$-“FILE” : B$=“NAME”
20 PRINT AS+BS
30 PRINT “NEW ”+A$+B$
RUN
FILENAME
NEW FILENAME
Ok

3-24

Constants, Variables,
Expressions and Operators

Strings may be compared using the same
relational operators that are used with
numbers:

String comparisons are made by taking one
character at a time from each string and
comparing the ASCII codes. If all the ASCII
codes are the same, the strings are equal. If
the ASCII codes differ, the lower code number
precedes the higher. If during string
comparison the end of one string is reached,
the shorter string is said to be smaller.
Leading and trailing blanks are significant.

Example

SMYTHE”
78” where B$=“8/12/78”

“AA”<“AB”
“FILEI\IAME”=“FILEI\IAME”
1 X&”>“X#’
“CL ”>“CL,!
“kg”>“KG”
“SMYTH
B$<“9/1

Thus, string comparisons can be used to test
string values or to alphabetize strings. All
string constants used in comparison
expressions must be enclosed in quotation
marks.

Note that lower case letters have higher ASCII
codes than upper case letters.

3-25

Disk File
Handling

• Device Independent
Input/Output

• How MS-DOS Keeps Track of
Your Files

• File Specification

• Commands for Program Files

• Disk Data Files —Sequential and
Random Access

4’1

Disk File Handling

DEVICE INDEPENDENT
INPUT/OUTPUT

GW BASIC provides device-independent
input/output that permits flexible approaches
to data processing. Using device independent
I/O means that the syntax for access is the
same for any device.

The following statements, commands, and
functions support device-independent I/O (see
individual descriptions in the Reference
section):

BLOAD
BSAVE
CHAIN
CLOSE
EOF
GET
INPUT
INPUTS
LINE INPUT
LIST
LOAD
LOC

LOF
MERGE
OPEN
POS
PRINT
PRINT USING
PUT
RUN
SAVE
WIDTH
WRITE

4-2

Disk File Handling

HOW MS-DOS KEEPS
TRACK OF YOUR FILES

A file is a collection of information. The names
of files are kept in directories on disk or
diskette. These directories also contain
information on the size of the files, their
location on the disk, and the dates that they
were created and updated. The directory you
are working in is called your current directory.

An additional system area is called the File
Allocation Table. It keeps track of the location
of your files on the disk. It also allocates the
free space on your disks so that you can create
new files.

These two system areas, the directories and
the File Allocation Table, enable MS-DOS to
recognize and organize the files on your disks.
The File Allocation Table is copied onto a new
disk when you format it with the MS-DOS
FORMAT command, and one empty directory
is created, known as the root directory.

To use the information in a file you must
OPEN the file to tell GW BASIC where the
information is. You may then use the file for
input and/or output.

4-3

Disk File Handling

Using GW BASIC, any type of input/output
may be treated like I/O to a file, whether you
are actually using a disk or diskette file, or are
communicating with another computer or a
peripheral device. Thus some I/O statements,
functions and commands allow you to specify
or refer to either a file or a device (e.g. OPEN,
LIST, CLOSE, etc...).

4-4

Disk File Handling

FILE SPECIFICATION

FILE NUMBERS

Up to 15 files, numbered 1 to 15, can be opened
by GW BASIC at one time. The number of files
that can be opened is specified using the /F:
option on the GW BASIC command. A file
number is associated with a file when the file
is opened.

NAMING FILES

Each file is identified by its file specification
(or filespec). The filespec is a string
expression with the following format:

“[device:] filename”

The device name (or “device”) tells GW BASIC
on which device to look for the file, and the
filename tells GW BASIC which file to look for
on that device. The device name is optional. If
omitted the default device is assumed. Note the
colon (:), indicated above, must be used
whenever a device is specified.

4-5

Disk File Handling

A file name can comprise:

• one to eight characters (for legal characters
see below). For example NEWFILE.

• one to eight characters, followed by a period (.)
and a one to three character file name
extension. For example NEWFILE.EXE.

A file name may be made up of any of the
following characters:

A-Z
o/o

0-9
($

(
#
■■

I
■

Alphabetic characters within the file name
can be entered in upper or lower case, but MS-
DOS will translate lower case letters into
upper case.

GW BASIC supplies the extension .BAS if no
extension is given, but NAME and KILL do
not follow this rule; they do not supply any
extension.

4-6

Disk File Handling

File specification for communications devices
is slightly different. The filename is replaced
with a list of options specifying such things as
line speed. Refer to OPEN COM statement in
the Reference section for details.

Remember that if you use a string constant for
the filespec, you must enclose it in quotation
marks. The only exception to this rule is the
MS-DOS GW BASIC command, where a file
specifier is a string constant not included in
quotation marks.

For example, in GW BASIC, you would type:

RUN “B:ARSENAL.RED”

but from MS-DOS you use:

A> gwbasic b:arsenal.red

4-7

Disk File Handling

NAMING DEVICES

The device name consists of up to four
characters and is always followed by a colon
(:). The colon must always be used whenever a
device is specified. The device name may be
one of the following:

A: first diskette drive (Input and Output)
B: second diskette drive (Input and Output)
C: first hard disk drive (Input and Output)
D: second hard disk drive

(Input and Output)
KYBD: keyboard (Input only)
SCRIM: screen (Output only)
LPT1: first printer (Output only)
LPT2: second printer (Output only)
LPT3: third printer (Output only)
C0M1: RS232 Communications 1

(Input and Output)
COM2: RS232 Communications 2

(Input and Output)
COM3: RS232 Communications 3

(Input and Output)
COM4: RS232 Communications 4

(Input and Output)

4-8

Disk File Handling

DIRECTORY PATHS

With GW BASIC the user can organize a disk
in such a manner that files that are not part of
his current task do not interfere with that
task.

Previously, only a single directory was
supported that contained all files on a disk.
MS-DOS extends this concept to allow a
directory to contain both files and directories
and to introduce the notion of the “current”
directory.

To specify a file, the user could use one of two
methods: either specify a path from the root
directory to the file, or specify a path from the
current directory to the file. A “Directory
Path” (or “pathname”) is a series of directory
names separated by ‘\’ and ending with a file
name. A pathname that starts at the root
begins with the 7’.

There are two special directory entries in each
directory, denoted by 7 and They specify
the directory itself (7) and the parent of the
directory (7’). The root directory’s parent is
itself.

4-9

Disk File Handling

Let us take a hypothetical example.

In a particular business, both sales and
accounting share a computer with a large disk
and the individual employees use it for
preparation of reports and maintaining
accounting information. One would naturally
view the organization of files on the disk in
this fashion:

4-10

Disk File Handling

STEVEHr] JOHN MARY

REPORT REPORT
other

REPORT
other

SUE

REPORT

files

4-11

Disk File Handling

Using a directory structure like the hierarchy
above, and assuming that the current
directory is at point [*] (directory JOHN), to
reference the REPORT under JOHN, the
following are equivalent:

REPORT

\SALES\JOHN\REPORT

To refer to the REPORT under MARY,
supposing that JOHN is still the current
directory, the following are equivalent:

..\MARY\REPORT
\SALES\MARY\REPORT

To refer to the REPORT under SUE,
supposing that JOHN is still the current
directory, the following are equivalent:

..\..\ACCOUNTING\SUE\REPORT
\ACCOUI\ITII\IG\SUE\REPORT

4-12

Disk File Handling

CURRENT DIRECTORY

GW BASIC remembers a default directory
(called the “current” directory) for each drive
on your system. This is the directory that
GW BASIC will search if you enter a filename
without specifying which directory the file is
in. A single directory is created on a disk when
it is formatted. That directory is called the
“root” directory. You can create other
directories by entering the MKDIR command,
or remove directories by entering the RMDIR
command (see the Reference section.) The
CHDIR command allows you to change the
current directory. Just after formatting a
diskette the ROOT directory is the current
directory.

If a “pathname” begins with a backslash (\),
GW BASIC starts its search from the “root;”
otherwise it starts its search from the current
directory. The “pathname” you specify can be
a sequence of directory names starting either
with the “root,” or with the current directory.
If the file belongs to the current directory you
only need to specify the file.

4-13

Disk File Handling

There is no restriction on the depth of a tree
(the length of the longest path from root to
leaf) except in the number of allocation units
available. The root directory will have a fixed
maximum number of entries, 64 or 112 files for
a diskette. The maximum number of files in a
hard disk root directory depends on the size of
the MS-DOS partition on the disk.

Other “sub-directories” can also be accessed
via the root directory, and these in turn can
branch off to further files and sub-directories.
The only limit is the amount of available
space on the disk.

Old (pre 2.0) disks will appear to MS-DOS 2.0
as having only a root directory with files in it
and no sub-directories whatever.

4-14

Disk File Handling

Each directory can contain file and
directory names that also appear in other
directories.

Pathnames can be used for the following
commands:

BLOAD GWBASIC(*) NAME
BSAVE KILL OPEN
CHAIN LOAD RMDIR
CHDIR MERGE RUN
FILES MKDIR SAVE

(*) Used to initialize GW BASIC. This is an
MS-DOS command (not a GW BASIC
command).

A “pathname” may be considered as an
extension of “filespec” and is a string
expression of the form:

[device:][\directory][\directory] ... [\]
filename
or

[device:][directory][directory]. . .
[directory]

4-15

Disk File Handling

All characters that are valid for a filename are
also valid for a directory name.

Examples (supposing JOHN is the current
directory):

B:\SALES\MARY\REPORT

B: . .\MARY\REPORT

The GWBASIC command and some GW
BASIC commands allow you to specify a file
by either a “filespec” or a “pathname” LOAD,
MERGE, NAME, OPEN, RUN and SAVE.

Some GW BASIC commands allow you to use
only the latter form of a “pathname.” They
are: MKDIR, RMDIR, and CHDIR.

The FILES command allows you to use both
forms to display either all files residing on a
directory or a single file, or a group of files by
using wild cards (* and/or ?.)

4-16

Disk File Handling

A “pathname” may not contain more than 63
characters. Pathnames longer than 63
characters will give a “Bad Filename” error.

Specifying a “pathname” where only a
“filespec” is legal, or placing a “device” other
than at the beginning of the “pathname” will
result in a “Bad Filename” error.

If you use a string constant for the
“pathname,” you must enclose it in quotation
marks. Only the GWBASIC command
specifies pathnames as literal strings not
included in quotation marks.

4-17

Disk File Handling

COMMANDS FOR
PROGRAM FILES

The following list reviews the commands and
statements used in program file manipulation.

With GW BASIC the asterisk (*) and question
mark (?) can be used as wild cards with the
FILES and KILL commands.

SAVE filespec [,{A|P}]
or
SAVE pathname [,{A|P|]

Writes to disk the program that currently
resides in memory. Option A writes the
program as a series of ASCII characters
(otherwise, GW BASIC or uses a compressed
binary format); option P writes the program in
a protected form. (See Protected Files in this
chapter.)

LOAD filespec [,R]
or
LOAD pathname [,R]

Loads the program from disk into memory.
Option R runs the program immediately.
LOAD always deletes or the current contents
of memory and closes all files before loading.
If R is included, however, open data files are
kept open. Thus, programs may be chained or
loaded in sections and access the same data
files. LOAD filespec, R and RUN filespec, R
are equivalent.

4-18

Disk File Handling

RUN filespec [,R]
or
RUN pathname [,R]

Loads the program from disk into memory and runs it. RUN
deletes the current contents of memory and closes all files
before loading the program. If the R option is included,
however, all open data files are kept open. RUN filespec,R and
LOAD filespec,R are equivalent.

MERGE filespec
or
MERGE pathname

Loads the program from disk into memory but does not
delete the current contents of memory. The program line
numbers on disk merge with the line numbers in memory. If
two lines have the same number, only the line from the disk
program is saved. After a MERGE command, the merged
program resides in memory, and GW BASIC returns to
command level.

KILL filespec
or
KILL pathname

Deletes the file from the disk. The filename may be a program
file, or a sequential or random access data file.

NAME {filespec} AS filename
or
NAME {pathname} AS {filename}

Changes the name of a disk file. NAME may be used with
any disk file.

4-19

Disk File Handling

PROTECTED FILES

If you want to save a program in an encoded
binary format, use the Protect option with the
SAVE command. For example:

SAVE “MYPROG”,P

Because a program saved in this manner can
not be saved, listed or edited, you may want to
save an unprotected copy of the program for
these purposes.

4-20

Disk File Handling

DISK DATA FILES -
SEQUENTIAL AND
RANDOM ACCESS

Two types of disk data files can be created and
accessed by a GW BASIC program:

• sequential files

• random access files

SEQUENTIAL FILES

Sequential files are easier to create than
random access files but limit flexibility and
speed when accessing the data. The data
written to a sequential file is in the form of
ASCII characters which are loaded and stored,
one item after another (sequentially), in the
order they are sent.

The statements and functions used with
sequential files are as follows:

CLOSE
EOF
INPUTS
INPUT#
LINE INPUT#
LOC
LOF
OPEN
PRINT#
PRINT# USING
WRITE#

4-21

Disk File Handling

CREATING A SEQUENTIAL
FILE

See the Reference section of this manual for
more information on these statements and
functions.

The following program steps are required to
create a sequential file and access the data in
the file:

• OPEN the file in “O” (Output) mode.

OPEN "O”,#1,“DATA”

• Write data to the file using the WRITE#
statement. (You may use the PRINT#
statement instead; refer to the PRINT#
statement in the Reference section.)

IA/RITE#1 ,AS,B$,CS

4-22

Disk File Handling

• If you have opened a file in the “O” mode, to
access the data in the file, you must CLOSE
the file and reOPEN it in the “I” (Input) mode.

CLOSE #1
OPEN “I”,#1,“DATA”

• Use the INPUT# statement to read data from
the sequential file to the program.

INPUTS'!,X$,Y$,Z$

A program that creates a sequential file can
also write formatted data to the disk with the
PRINT# USING statement. For example, the
statement

PRINT#1, USING"####.##, ”;A,B,C,D

could be used to write numeric data to disk
without explicit delimiters. The comma (,) at
the end of the format string serves to separate
each item in the disk file.

4-23

Disk File Handling

The LOC function, when used with a
sequential file, returns the number of sectors
that have been written to or read from the file
since it was opened. For example,

100 IF LOCH) > 50 THEN STOP

would end program execution if more than 50
sectors had been written to, or read from, file
#1 since it was opened.

Program 1 is a short program that creates a
sequential file, named “DATA,” from informa
tion you input at the keyboard.

10 OPEN “O”,#1 .“DATA”
20 INPUT “NAME”;N$
25 IF NS = “DONE” THEN END
30 INPUT “DEPARTMENT”;D$
40 INPUT “DATE HIRED”;H$
50 PRINT#1,N$;“,”;D$;“,”;H$
60 PRINT:GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

4-24

Disk File Handling

NAME? SHERLOCK HOLMES
DEPARTMENT?
DATE HIRED?12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT?
DATE HIRED? 04/27/78

NAME? SUPER MAN
DEPARTMENT?
DATE HIRED? 08/16/78

NAME? DONE
Ok

4-25

Disk File Handling

ACCESSING A
SEQUENTIAL FILE

Program 2 accesses the file “DATA” that was
created in Program 1 and displays the name of
everyone hired in 1978.

10 OPEN “I”,#1 .“DATA”
20 INPUT#1,N$,D$,H$
30 IF RIGHT$(H$J2)=“78” THEN PRINT NS
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MAN
Input past end in 20
Ok

The program reads, sequentially, every item in
the file. When all the data has been read, line
20 causes an “Input past end” error. This error
can be avoided, however, by inserting an
additional line (line 15 shown below) which
uses the EOF function to test for end-of-file.

15 IF E0F(1) THEN END

Then change line 40 to GOTO 15.

4-26

ADDING DATA TO A
SEQUENTIAL FILE

Disk File Handling

As soon as a sequential file is opened on disk
in “O” mode, its current contents are
destroyed. In order to add more data to the file
it is necessary to use the OPEN statement
with the APPEND mode, as described in the
Reference section of this manual.

4-27

Disk File Handling

RANDOM ACCESS FILES

Creating and accessing random access files
requires more program steps than with
sequential files, but there are advantages to
using random access files. One advantage is
that random access files require less room on
the disk, because GW BASIC stores them in a
packed binary format. (A sequential file is
stored as a series of ASCII characters.)

The biggest advantage to random access files
is that data can be accessed at random, i.e.,
anywhere on the disk. It is not necessary to
read through all the information on disk with
random access files, as with sequential files.
This is possible because the information is
stored and accessed in distinct units called
records and each record is numbered.

The statements and functions that are used
with random access files are:

CLOSE
CVD
CVI
CVS
FIELD
GET
LSET
LOC

LOF
MKD$
MKI$
MKS$
OPEN
PUT
RSET

4-28

Disk File Handling

CREATING A
RANDOM ACCESS FILE

Creation of a random access file requires the
following program steps.

1 OPEN the file for random access (“R” mode.)
Always use the “R” (Random) mode for
random access files. “R” allows you to perform
both input and output operations on a file.

This example specifies a record length of 32
bytes. If the record length is omitted, the
default is 128 bytes.

OPEN “R”,#1,“FILE”,32

2 Use the FIELD statement to allocate space in
the random buffer for the variables that will
be written to the random file.

FIELD #1,20 AS NS, 4 AS AS,8 AS PS

3 Use the LSET command to move the data into
the random buffer. Numeric values must be
made into strings when placed in the buffer.
To do this, use the “make” functions. MKI$
makes an integer value into a string, MKS$
does the same for a single precision value, and
MKD$ converts a double precision value. See
the Reference section for more information on
these functions.

4-29

Disk File Handling

LSET N$=X$
LSET A$=MKS$(AMT)
RSET P$=TEL$

Write the data from the buffer to the disk
using the PUT statement.

PUT #1,CODE°lo

The LOC function, with random access files,
returns the “current record number.” The
current record number is one, plus the last
record number that was used in a GET or PUT
statement. For example, the statement

IF LOC(1)>50 THEN END

ends program execution if the current record
number in file#l is higher than 50.

The following example writes information that
is input at the terminal to a random access
file.

10 OPEN “R”,#1,“FILE”,32
20 FIELD #1,20 AS N$, 4 AS AS, 8 AS PS
30 INPUT “2-DIGIT CODE”;CODE°lo
40 INPUT “NAME”;X$
50 INPUT “AMOUNT”;AMT
60 INPUT “PHONE”;TEL$:PRINT
70 LSET N$=X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT #1,CODE°lo
110 GOTO 30

4-30

Disk File Handling

Each time the PUT statement is executed, a
record is written to the file. The two-digit code
that is input in line 30 becomes the record
number.

Note

Do not use a FIELDed string variable in an
INPUT or LET statement. This causes the
pointer for that variable to point into string
space instead of into the random access file
buffer.

4-31

Disk File Handling

ACCESSING A
RANDOM ACCESS FILE

Reading a random access file requires the
following steps.

1 OPEN the file in “R” mode.

OPEN “R”,#1,“FILE”,32

2 Use the FIELD statement to allocate space in
the random buffer for the variables that will
be read from the file.

FIELD #1,20 AS N$, 4 AS AS,8 AS PS

3 Use the GET statement to move the desired
record into the random buffer.

GET #1,CODE°lo

4 The data in the buffer may now be accessed by
the program. Numeric values must be
converted back to numbers using the
“convert” functions. CVI converts numeric
values to integer values, CVS converts
numeric values to single precision values, and
CVD converts numeric values to double
precision values.

4-32

Disk File Handling

PRINT N$

PRINT CVS(AS)

The following program accesses the “FILE”
that was created in the Previous example.
When the two-digit code is entered at the
terminal, the information associated with that
code is read from the file and displayed.

10 OPEN “R”,#1,“FILE”,32
20 FIELD #1, 20 AS NS, 4 AS AS, 8 AS PS
30 INPUT “2-DIGIT CODE”;CODE°lo
40 GET#1, CDDEO/o
50 PRINT NS
60 PRINT USING “$$###.##”;CVS(A$)
70 PRINT P$:PRINT
80 GOTO 30

4-33

Disk File Handling

This Page Left Intentionally Blank.

4-34

Disk File Handling

The following example is an inventory
program that illustrates random file access. In
this program, the record number is used as the
part number, and it is assumed the inventory
will contain no more than 100 different part
numbers. Lines 900 through 960 initialize the
data file by writing CHR$(255) as the first
character of each record. This is used later
(line 270 and line 500) to determine whether an
entry already exists for that part number.

Lines 140 through 210 display the different
inventory functions that the program
performs. When you type in the desired
function number, line 230 branches to the
appropriate subroutine.

120 OPEN"R”,#1,“INVEN.DAT”,39
130 FIELD#1,1 AS F$,30 AS OS,2 AS Q$,2 AS RS,4 AS PS
140 PRII\lT:PRII\IT “FUNCTIONS:”:PRINT
150 PRINT 1,“INITIALIZE FILE”
160 PRINT 2, “CREATE A NEW ENTRY”
170 PRINT 3,“DISPLAY INVENTORY FOR ONE PART”
180 PRINT 4,“ADD TO STOCK”
190 PRINT 5,“SUBTRACT FROM STOCK”
200 PRINT 6,“DISPLAY ALL ITEMS BELOW REORDER LEVEL”
210 PRINT:PRINT:INPUT “FUNCTION”;FUNCTION
220 IF (FUNCTION<1)OR(FUNCTION<6) THEN PRINT "BAD

FUNCTION NUMBER”:GOTO 140
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 150
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN

INPUT “OVERWRITE”;A$:
IF A$‘‘Y” THEN RETURN

4-35

Disk File Handling

280 LSET F$ CHR$(0)
290 INPUT “DESCRIPTION ”;DESC$
300 LSET D$=DESC$
310 INPUT “QUANTITY IN STOCK”;QO/o
320 LSET Q$ MKI$(Q°/o)
330 INPUT “REORDER LEVEL”;R°/o
340 LSET RS=MKI$(R°/o)
350 INPUT “UNIT PRICE”;P
360 LSET P$=MKS$(P)
370 PUT#1 ,PART°/o
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:RETURN
420 PRINT USING “PART NUMBER ###”;PARTo/o
430 PRINT D$
440 PRINT USING “QUANTITY ON HAND #####”;CVI(Q$)
450 PRINT USING “REORDER LEVEL #####”;CVI(R$)
460 PRINT USING “UNIT PRICE $$##.##”;CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:RETURN
510 PRINT O$:INPUT “QUANTITY TO ADD” ;A°lo
520 Q°/o=CVI(Q$)+A°/o
530 LSET Q$=MKI$(Q°fo)
540 PUT#1 ,PART°/o
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$) 255 THEN PRINT “NULL ENTRY”:RETURN
590 PRINT 0$
600 INPUT “QUANTITY TO SUBTRACT”;S°/o
610 Q°/o=CVI(Q$)
620 IF (Q°/o-S°loXO THEN PRINT “ONLY”;Q°/o;“IN STOCK”:GOTO 600

4-36

630
640

650
660
670
680
690
710
715
720

730
740
840
850

890
900
910
920
930
940
950
960

Disk File Handling

Q°/o=Q°lo-S°lo
IF Q°lo=<CVI(R$) THEN PRINT "QUANTITY NOVA/”;Q°lo;

"REORDER LEVEL”;CVI(R$)
LSET Q$=MKI$(Q°lo)
PUT#1,PART°lo
RETURN
REM DISPLAY ITEMS BELOW REORDER LEVEL
FOR 1=1 TO 100
GET#1J
IF ASC (FSJ255 THEN 730
IF CVKQSXCVKRS) THEN PRINT 0$; "QUANTITY";

CVI(QS) TAB(50) "REORDER LEVEL”;CVI(R$)
NEXT I
RETURN
INPUT "PART NUMBER";PART°/o
IF(PART°lo<1)OR(PART°/o>100) THEN PRINT “BAD

PART NUMBER": GOTO 840 ELSE
GET#1 ,PART°/o:RETURN

END
REM INITIALIZE FILE
INPUT "ARE YOU SURE";B$:IF B$"Y” THEN RETURN
LSET F$=CHR$(255)
FOR 1=1 TO 100
PUT#1,I
NEXT I
RETURN

4-37

Graphics

• Selecting the Screen Attributes

• Text Mode

• Graphics Mode

5-1

Graphics

SELECTING THE
SCREEN ATTRIBUTES

The SCREEN statement allows you to switch
between text and graphics modes and the
WIDTH statement allows you to set the
number of columns.

There are three different graphics modes you
can select with the SCREEN statement:

• Medium Resolution Mode

• High Resolution Mode

• Super Resolution Mode

They differ only in the number and size of the
points displayed and in the number of colors
allowed.

The SCREEN statement also allows you
(through the “burst” parameter) to enable color
in Text or Medium-Resolution Mode (using a
color TV set or RGB monitor), and to select the
active and display pages in Text Mode (through
the “apage” and “vpage” parameters). For a
standard monitor, the “burst” parameter has
no meaning.

5-2

Graphics

The SCREEN statement must precede any I/O
statements to the screen, as it selects the
“screen attributes” to be used by subsequent
statements. The system assumes SCREEN
0,0,0,0 by default if no screen attributes are
specified. This selects 80 columns Text Mode,
B/W, and only one display page.

You can also use more than one SCREEN
statement to define different screen attributes
for different sections of your program.

5-3

Graphics

TEXT MODE

In Text Mode you can display text, i.e., letters,
numbers, and all special characters of the GW
BASIC character set. You can set the
character foreground and background colors
using the COLOR (Text) statement. This
statement also allows you to create blinking,
reverse image, invisible, highlighted, and
underscore characters.

Characters are displayed in 25 horizontal
lines numbered 1 through 25, from top to
bottom. Each line has 40 (or 80) character
positions. The WIDTH command allows you
to select the number of columns.

The LOCATE statement positions the cursor
on the active screen. The cursor column and
line coordinates are returned by the POS(O)
and CSRLIN functions.

Characters are normally displayed, using the
PRINT or PRINT USING statements, at the
cursor position from left to right on each line,
from line 1 to 24. When the cursor passes to
line 25, lines 1 through 24 are scrolled up one
line.

5-4

Graphics

Line 25 is usually reserved as a “soft key”
display (see KEY statement in the Reference
section).

Multiple Display Page

A special feature of Text Mode is multiple
display pages. Your system has a 16K-byte
screen buffer, of which only 2K is required for
Text Mode (or 4K for 80 column width). The
buffer is therefore divided into different pages,
which can be written to and/or displayed
individually. There are 8 display pages in 40
column width and 4 display pages in 80
column width.

Statements, Commands and Functions

The statements, commands and functions
available in Text Mode to display text are:

Statements/
Commands Functions

CLS
COLOR (Text)
LOCATE (Text)
PRINT
PRINT USING
SCREEN
WIDTH
WRITE

CSRLIN
POS
SCREEN
SPC
TAB

5-5

Graphics

In Text Mode you can use 16 different colors (if
color hardware is installed):

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 White

8 Gray
9 Light Blue

10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Yellow
15 High-intensity White

In a monochrome system only two colors are
available (black and white,) but you can
underline characters, make characters blink,
or display high-intensity characters.

5-6

Graphics

GRAPHICS MODE

In Graphics Mode you can still display text,
but you can also draw complex pictures. To
display text in Graphics Mode you can use all
the statements, commands and functions
available in Text Mode, with the exception of
the COLOR (Text) and LOCATE (Text)
statements. In Graphics mode you have to use
the COLOR (Graphics) and LOCATE
(Graphics) statements instead. Note also that
the CLS and WIDTH statements have
different features in Graphics Mode.

In Graphics Mode all points of the screen are
addressable in medium, high or super
resolution. A point on the screen is called a
'pixel’ (a contraction of “picture element”,) and
a line of pixels is called a “scanline.”

Statements, Commands and Functions

The statements, functions, and commands you
can use in Graphics Mode to display pictures
are:

Statement/Commands

CIRCLE
COLOR (Medium-Resolution)
COLOR (High-Resolution)
COLOR (Super-Resolution)
DRAW
GET (Graphics)
LOCATE (Graphics)
PAINT
PRESET
PSET
PUT (Graphics)
SCREEN
VIEW
WINDOW

Functions

PMAP
POINT

5-7

Graphics

MEDIUM
RESOLUTION MODE

In this mode, there are 320 pixels on the
horizontal axis and 200 pixels on the vertical
axis. These are numbered from left to right
and from top to bottom; thus the upper left
corner pixel is (0,0) and the lower right corner
pixel is (319, 199.)

You can display four colors at a time if a color
monitor is used, otherwise the four colors will
appear as shades of grey.

Drawing Pictures

When you draw pictures on the screen using
the graphics statements (PSET, PRESET,
LINE, CIRCLE, PAINT or DRAW,) you can
specify a color number of 0, 1, 2, or 3. This
selects the color from the current “palette” as
defined by the COLOR statement.

If you do not specify a color number, the
default is the graphics foreground specified by
the COLOR statement, or 3 (if no graphics
foreground is given.)

5-8

Graphics

The COLOR (Medium-Resolution) statement
allows you to specify both the color for color
number 0, and the “palette” for the three
remaining color numbers (1,2, and 3.)

Palette Color 1 Color 2 Color 3

0 Green Red Yellow
1 Cyan Magenta White

If color is disabled the use of memory is
identical: the modes differ only in that the two
bits of a pixel are interpreted differently by the
hardware: medium resolution B/W displays 4
shades of grey.

Displaying Characters

When you display characters in Medium
Resolution Mode, the size of the characters is
the same as in Text Mode when you specify a
40-column width. The character foreground
color is set by the “tforeground” parameter in
the COLOR statement (that defaults to color
number 3.) The character background is set by
the “background” parameter in the COLOR
statement (that defaults to color number 0, i.e.,
Black.)

If color is disabled the character foreground
will be 1 (White) and the character background
0 (Black.)

5-9

Graphics

HIGH RESOLUTION MODE

In this mode, there are 640 pixels on the
horizontal axis and 200 pixels on the vertical
axis. These are numbered from left to right
and top to bottom; thus the upper left corner
pixel is (0,0) and the lower right corner pixel is
(639, 199.)

There are only two colors: black (color number
0) and white (color number 1.)

Drawing Pictures

When you draw pictures using the graphics
statements, you can still specify a color
number 0, 1, 2, or 3.

A color of 0 indicates black and a color of 1
white. A color of 2 is treated as 0, and 3 is
treated as 1.

5-10

Graphics

If you do not specify a color number, the
default is the graphics foreground specified by
the COLOR statement, or 1 (if no graphics
foreground is given.)

The COLOR statement allows you to specify
the graphics foreground and background
colors and, optionally, an XOR operation
between the pixels on the screen and the pixels
of your graphics picture or text.

Displaying Characters

The size of the characters is the same as in 80-
column Text Mode.

The character foreground color is 1 (white) and
the background color is 0 (black.)

5-11

Graphics

SUPER RESOLUTION MODE

In this mode, there are 640 pixels on the
horizontal axis and 400 pixels on the vertical
axis. These are numbered from left to right
and top to bottom; thus the upper left corner
pixel is (0,0) and the lower right corner pixel is
(639, 399.)

There are only two colors: black (color number
0) and white (color number 1.)

Drawing Pictures

When you draw pictures using the graphics
statements, you can still specify a color
number of 0, 1, 2, or 3.

A color number of 0 indicates black and a
color number of 1 indicates white. A color
number of 2 is treated as 0, and a color number
of 3 is treated as 1.

If you do not specify a color number, the
default is the graphics foreground specified by
the COLOR statement, or 1 (if no graphics
foreground is given.)

5-12

Graphics

The COLOR (Super Resolution) statement
allows you to specify the graphics foreground
and background colors and, optionally, an XOR
operation between the pixels on the screen and
the pixels of your picture or text. The COLOR
statement also allows you to specify ‘inverse
video’, when you display characters.

Displaying Characters

The size of the characters is the same as in 80-
column Text Mode.

The character foreground color is 1 (white) and
the character background 0 (black), unless you
specify ‘inverse video’ by the COLOR
statement.

5-13

Graphics

SCREEN COORDINATES

Graphics images are positioned on the screen
in accordance with screen coordinates. These
coordinates comprise two parameters
generally referred to as x and y, where x
defines the horizontal screen position and y
defines the vertical screen position. Screen
coordinates may be of two types:

• absolute coordinates

• relative coordinates

Whereas absolute coordinates refer to the
actual position of a pixel on the screen,
relative coordinates indicate the position of a
pixel relative to the coordinates of the last
pixel referenced. The x and y relative
coordinates are therefore 'offset’ values from
the last pixel referenced (known as the
"current point”.)

Screen coordinates are described fully in the
Reference section (refer particularly to the
WINDOW statement;) however, the following
example illustrates the use of both types of
coordinates:

10 SCREEN 1
20 PSET (100,50) 'absolute coordinates
30 PSET STEP (10,-5) 'relative coordinates

This program example illuminates two pixels
on the screen: the first at coordinates (100,50)
and the second at actual coordinates (110,45.)

5-14

Graphics

VIEW STATEMENT

The VIEW statement allows the definition of
subsets of the viewing surface. These are
called “viewports.” Onto these the contents of
a window are mapped. Initially RUN or
VIEW, with no arguments, define the whole
screen as a viewport. Refer to the Reference
section for a full description of VIEW.

5-15

Graphics

WINDOW STATEMENT

WINDOW allows you to draw lines, graphs, or
objects in space not bounded by the physical
limits of the screen. This is done by using
programmer-defined coordinates called “World
coordinates.”

A world coordinate is any valid single
precision floating point number pair. GW-
BASIC then converts world coordinate pairs
into the appropriate physical coordinate pairs
tor subsequent display within screen space. To
make this transformation from world space to
the physical space of the viewing surface
(screen), GW BASIC must know what portion
of the unbounded (floating point) world
coordinate space contains the information you
want to be displayed.

This rectangular region in world coordinate
space is called a WINDOW.

Refer to the Reference section for a full
description of the WINDOW statement.

5-16

Graphics

DISPLAYING POINTS

The most elementary graphic function is that
of illuminating the position of a single point
(or ‘pixel’) in a specified color. This is achieved
using the PSET and PRESET statements. The
POINT function allows you to know the color
number of a specified pixel. Refer to a full
description of these in the Reference section.

5-17

DRAWING AND COLORING
LINES, RECTANGLES,
OBJECTS, CIRCLES,

ARCS, ELLIPSES

The LINE statement permits the drawing of
lines or rectangles. The DRAW statement,
governed by “movement commands” such as
up, down, left, and right, lets you draw any
object. Circles, arcs, and ellipses can be drawn
using the CIRCLE statement, and the PAINT
statement allows any object to be filled with
color(s).

Refer to statements: LINE, CIRCLE, GET and
PUT (graphics), PAINT, and DRAW in the
Reference section for a complete description.

5-18

Graphics

LINE CLIPPING

The graphics statements CIRCLE, LINE,
PAINT, POINT, PSET, PRESET, and
WINDOW use “line clipping.” This simply
means that lines which cross the screen or
viewport are “clipped” at the boundaries of the
viewing area. Only the points plotted within
the screen or viewport are visible.

5-19

Asynchronous
Communications

• Opening Communications Files

• Communication I/O Functions

• An Exercise in Communication
I/O

6-1

Asynchronous Communications

OPENING
COMMUNICATIONS FILES

The OPEN COMmunications statement
allocates a buffer for input and output in a
similar manner as the OPEN statement for
disk files. Refer to the OPEN COM Statement
in the Reference section for a full description.

6-2

Asynchronous Communications

COMMUNICATION I/O

Since the communication port is opened as a
file, all Input/Output statements that are
valid for disk files are valid for COM.

COM sequential input statements are the
same as those for disk files. They are:
INPUT #, LINE INPUT #, and the INPUTS
function.

COM sequential output statements are the
same as those for disk, and are: PRINT #,
PRINT # USING, and WRITE tt.

Refer to the descriptions of these statements in
the Reference section for details of coding
syntax and usage.

The GET and PUT statements are only
slightly different for COM files. See the GET
(COM Files) and PUT (COM Files)
statements described in the Reference section.

6-3

Asynchronous Communications

LOC(f)

LOF(f)

EOF(f)

COMMUNICATION
I/O FUNCTIONS

The most difficult aspect of asynchronous
communication is being able to process
characters as fast as they are received. At
rates above 2400 bps, it may be necessary to
suspend character transmission from the host
computer long enough to catch up. This can be
done by sending XOFF (CHR$(19)) to the host
and XON (CHR$(17)) when ready to resume.

GW BASIC provides three functions which
help in determining when an over-run
condition is imminent. These are:

Returns the number of characters in the input
buffer waiting to be read. The input buffer can
hold more than 255 characters (determined by
the /C: switch.) If there are more than 255
characters in the buffer, LOC(f) returns 255.
Since a string is limited to 255 characters, this
practical limit means that you do not have to
test for string size before reading data into it.
If fewer than 255 characters remain in the
buffer, LOC(f) returns the actual count.

Returns the amount of free space in the input
buffer. That is, size-LOC(f), where 'size’ is the
size of the communications buffer as set by the
/C: option. LOF may be used to detect when
the input buffer is reaching its maximum
capacity.

If true (-1), indicates that the input buffer is
empty. Returns false (0) if any characters are
waiting to be read.

6-4

Asynchronous Communications

Possible Errors

• Communication Buffer Overflow
If a read is attempted after the input buffer is
full, (i.e. LOF(f) returns 0).

• Device I/O Error
If any of the following line conditions are
detected on reception: Overrun Error (OE),
Framing Error (FE), or Break Interrupt (BI).
The error is reset by subsequent inputs but the
character causing the error is lost.

• Device Fault
If Data Set Ready (DSR) is lost during I/O.

6-5

Asynchronous Communications

THE INPUT# FUNCTION
FOR COM FILES

The INPUTS function is preferable to the
INPUT# and LINE INPUT# statements when
reading COM files, since all ASCII characters
may be significant in communications.
INPUT# is least desirable because input stops
when a comma (,) or CR is received and LINE
INPUT terminates when a CR is received.

INPUTS allows all characters read to be
assigned to a string. INPUTS (n,f) will return
n characters from the #f file. The following
statements are therefore the most efficient for
reading a COM file:

10 WHILE NOT E0F(1)
20 AS=INPUT$(L0C(1)j#1)
30 ...
40 ... Process data returned in AS
50 ...

60 WEND

The above statements return the characters in
the buffer into A$ and process them, provided
there are characters in the buffer. If there are
more than 255 characters, only 255 will be
returned at a time to prevent String Overflow.
If this is the case, EOF(l) is false and input
continues until the input buffer is empty. The
sequence of events is therefore simple, concise,
and fast.

6-6

Asynchronous Communications

AN EXERCISE IN
COMMUNICATION I/O

The following program enables your Personal
Computer to be used as a conventional
terminal. Besides Full Duplex communication
with a host, the TTY program allows data to
be down loaded to a file. Conversely, a file
may be up loaded (transmitted) to another
machine.

In addition to demonstrating the elements of
Asynchronous Communication, this program
should be useful in transferring GW BASIC
programs and Data to and from your system.

6-7

Asynchronous Communications

ASYNC TTY PROGRAM

10 SCREEN 0,0:WIDTH 80
15 KEY OFF:CLS:CLOSE
20 DEFINT A-Z
25 LOCATE 25,1
30 PRINT STRINGSI60," ”)
40 FALSE=O:TRUE NOT FALSE
50 MENU=5 ‘ Value of MENU key (ctrl-E)
60 X0FFS=CHRS(19):X0NS=CHRS(17)
100 LOCATE 25,1:PRINT "Async TTY Program
110 LOCATE 1,1:LINE INPUT "Speed? ";SPEED$
120 C0MFIL$="C0M1:”+SPEED$+",E,7”
130 OPEN COMFILS AS #1
140 OPEN "SCRN:" FOR OUTPUT AS #3
200 PAUSE=FALSE
210 AS=INKEY$: IF A$=" "THEN 230
220 IF ASC(A$)=MENU THEN 300 ELSE PRINT #1,A$;
230 IF E0FI1) THEN 210
240 IF LOC(1)>128 THEN PAUSE=TRUE: PRINT #1,XOFFS;
250 AS=INPUT$(L0C(1),#1)
253 LINEFEED=O
255 LINEFEED=INSTR (LINEFEED S, A$,CHR$(10J)
257 IF LINEFEEDS THEN MIDSIAS, LINEFEED, 1) CHRS(0):G0T0 255
260 PRINT #3,A$;:IF LOCdJO THEN 240
270 IF PAUSE THEN PAUSE=FALSE:PRINT #1,XON$;
280 GOTO 210
300 LOCATE 1,1:PRINT STRINGSI30," "kLOCATE 1,1
310 LINE INPUT"FILE? ”;DSKFIL$
400 LOCATE 1,1 :PRINT STRINGSI30," ”):LOCATE 1,1
410 LINE INPUT"(T)RANSMIT OR (R)ECEIVE? ”;TXRX$
420 IF TXRX$="T” THEN OPEN OSKFILS FOR INPUT AS #2:G0T0
1000

430 OPEN OSKFILS FOR OUTPUT AS #2
440 PRINT #1,CHR$(13);
500 IF E0FI1) THEN GOSUB 600
510 IF LOC(1)>128 THEN PAUSE=TRUE: PRINT #1 .XOFFS;
520 A$=INPUT$(LOC(1),#1)
530 PRINT #2,A$;:IF LOC(1)>0 THEN 510
540 IF PAUSE THEN PAUSE=FALSE:PRINT #1,XOFFS;
550 GOTO 500
600 FOR 1=1 TO 5000
610 IF NOT E0FI1) THEN 1=9999
620 NEXT I
630 IF 1=9999 THEN RETURN
640 CLOSE #2:CLS:L0CATE 25,10:PRINT Download complete
650 RETURN 200
1000 WHILE NOT E0FI2)
1010 A$=INPUT$(1,#2)
1020 PRINT #1,AS;
1030 WEND
1040 PRINT #1,CHR$(26); CTRL-Z to make close file.
1050 CLOSE #2:CLS:L0CATE 25,10:PRINT pload complete
1060 GOTO 200
9999 CLOSE:KEY ON

6-8

Asynchronous Communications

PROGRAM NOTES

Line Comments

10 Sets the screen to Black and White Text Mode
and sets the Width to 80.

15 Turns off the Soft Key Display, clears the
screen, and makes sure that all files are closed.

Asynchronous implies character I/O as
opposed to line or Block I/O. Therefore, all
PRINT’S (either to the COM file or screen) are
terminated with a semicolon (;). This cancels
the CR LF normally issued at the end of a
PRINT statement.

20 Defines all numeric variables as INTEGER.
Primarily for the benefit of the subroutine at
600-620. Any program looking for speed
optimization should use integer counters in
loops where possible.

25-30 Clears the 25th line starting at column 1.

40 Defines Boolean TRUE and FALSE.

50 Defines the ASCII (ASC) value of the MENU
key.

60 Defines the ASCII XON, XOFF
characters.

100-130 Prints program-id and asks for baud rate
(speed). Opens Communications to file number
1, Even parity, 7 data bits.

This section can be modified to check for valid
baud rates before continuing.

6-9

Asynchronous Communications

200-280 This section performs Full Duplex I/O
between the Video Screen and the device
connected to the RS232 connector as follows:

• Read a character from the keyboard into A$.
Note that INKEY$ returns a null string if no
character is waiting.

• If no character is waiting then check to see if
any characters are being received. If a
character is waiting at the keyboard then:

• If the character was the MENU Key, then the
user is ready to download a file, so retrieve the
file name.

• If character (A$) is not the MENU key then
send it by writing to the communication file
(PRINT #1...).

• At 230, check if any characters are waiting in
COM buffer. If not, then go back and check
keyboard.

• At 240, if more than 128 characters are
waiting, then set the PAUSE flag, thereby
suspending input and send XOFF to the host,
thus stopping further transmission.

• At 253-257, strip out linefeed characters before
sending buffer contents to the screen.
Otherwise the PC executes a LF with each CR,
resulting in double spacing.

6-10

Asynchronous Communications

• At 250-260, read and display the contents of
COM buffer on screen until empty. Continue to
monitor (in 240.) Suspend transmission in the
event of an interface delay.

• Finally, resume host transmission by sending
XON only if suspended by previous XOFF.
Repeat process until MENU Key struck.

300-310 Retrieves the name of the Disk File from
which the information is to be downloaded.
Opens the file to file number 2.

400-420 Asks if file named is to be transmitted
(Uploaded) or received
(Downloaded.)

430-440 Sends a CR to the host to begin the download.
This program assumes that the last command
sent to the host to begin such a transfer was
missing only the terminating CR.

6-11

Asynchronous Communications

500 When no more characters are being received
(LOC(x) returns 0), then performs a timeout
routine (explained later).

510 Again, if more than 128 characters are
waiting, this line signals a pause, and in the
meantime sends XOFF to the host.

520-530 Reads all characters in the COM buffer
(LOC(x)) and writes them to disk (PRINT #2..).

540-550 If a pause was issued, restart host by sending
XON and clear the pause flag. Continue
process until no characters are received for a
pre-determined time.

600-650 This is the time-out subroutine. The FOR loop
count was determined by experimentation. In
short, if no character is received from the host
for 17-20 seconds, then transmission is
assumed complete. If any character is received
during this time (line 610) then set I well above
FOR loop range to exit loop and then return to
caller. If host transmission is complete, close
the disk file.

6-12

Asynchronous Communications

1000-1060 Transmit routine. Until end of disk file do:

Read one character into A$ with INPUTS
statement. Send character to COM device in
1020. Send a CTRL Z at end of file in 1040 if
receiving device needs to close its file. Finally,
in lines 1050 and 1060, close the disk file, print
completion message, and go back to
conversation mode in line 200.

9999 Presently not executed. As an exercise, add
some lines to the routine 400-420 to
optionally exit the program via line 9999.
This line closes the COM file which is left
open and restores the Soft Key Display.

6-13

Reference

• Commands, Statements, and
Functions with Examples

7-1

ABS
Function

Returns the absolute value of a numeric
expression.

Syntax ABS (numexp)

Remarks The returned value will always be positive or
zero.

Example Ok
PRINT ABS(8w(-6»

48
Ok

7-2

ASC
Function

Returns the ASCII decimal code for the first
character of a given string.

Syntax ASC (stringexp)

Remarks The ASC function returns the ASCII code CO-
255) corresponding to the first character of the
string expression. See Appendix A for a
complete list of all ASCII codes.

If “stringexp” is null, an “Illegal function
call” error is returned.

See the CHR$ function, later in this chapter,
for ASCII-to-string conversion. CHR$ is the
inverse of the ASC function.

Example The following example shows that the ASCII
code for capital letter “T” is 84.

1OX$=“TEST”
20 PRINT ASC(X$)
RUN
84
Ok

7-3

ATN
Function

Syntax

Remarks

Example

Returns the arctangent of the argument.

ATN (numexp)

The evaluation of ATN is performed in single
precision, unless you specify /D, (double
precision), when you invoke GWBASIC.

The result is expressed in radians and falls in
the range -PI/2 to PI/2 (where PI = 3.141593).

10 INPUT X
20 PRINT ATN(X)
RUN
? 3

1.249046
Ok

7-4

AUTO
Command

Generates a line number after every carriage
return. AUTO is used only for entering
programs.

Syntax AUTO [linenum][,[increment]]

linenum is the line number used to commence numbering lines. A
period may be used to indicate the current line.

increment is the value added to a line number to produce the next line
number

Remarks AUTO begins numbering at “linenum” and
increments each subsequent line number by
“increment.” The default for both values is 10.
If “linenum” is followed by a comma but
“increment” is not specified, the last
increment specified in an AUTO command is
assumed. If “linenum” is omitted but
“increment” is included, line numbering
begins with 0.

If AUTO generates a line number that is
already being used, an asterisk is displayed
after the number to warn you that any input
will overwrite the existing line. Typing a
carriage return immediately after the asterisk
saves the line and generates the next line
number.

7-5

AUTO
Command

AUTO is terminated by pressing
CTRL and BREAK. The line in which
CTRL and BREAK is pressed is not saved.
After CTRL and BREAK is pressed,
GW BASIC returns to command level.

Examples • AUTO
Generates line numbers 10, 20, 30, 40 . ..

• AUTO 100,20
Generates line numbers 100, 120, 140 . ..

• AUTO 200,
Generates line numbers 200, 220, 240, 260, ...
The increment is 20 because 20 was the
increment in the last AUTO command.

• AUTO,15
Generates line numbers 0,15,30,45, . ..

7-6

BEEP
Statement

Activates the bell.

Syntax BEEP

Remarks In the following example, the program is
checked to see if “X” is out of the accepted
range. MIN and MAX are variables
containing the limits of the accepted range.

PRINT CHR$(7); sends an ASCII BEL
character, which also activates the bell.

Example 2430 IF (X<MIl\l) or (X>MAX) THEN BEEP

7-7

BLOAD
Command

^1 Loads a memory image file into memory.

Syntax BLOAD {filespec} [, offset]

filespec is a string expression that specifies the file to be loaded. If
the device is omitted, the MS-DOS default drive is assumed.

offset is an integer expression in the range 0 to 65535. This is the
offset into the segment declared by the last DEF SEG
statement at which loading is to start.

Remarks The BLOAD statement allows you to load
assembly language routines into memory.
When these routines are resident in memory,
they can be CALLed from your GW BASIC
program by a CALL statement.

The BLOAD and BSAVE statements allow
you to load and save any portion of memory.
For example, you can save and display screen
images (specifying the screen buffer as the
current segment by a DEF SEG statement).

If “offset” is omitted, the offset specified at
BSAVE is assumed and the file is loaded into
the same location from which it was saved.

7-8

BLOAD
Command

If “offset” is specified, a DEF SEG statement
should be executed before the BLOAD. When
“offset” is given, GW BASIC assumes you
want to BLOAD at an address other than the
one saved. The last known DEF SEG address
will be used. If no DEF SEG statement has
been given, the GW BASIC data segment is
used as the default (because it is the default for
DEF SEG).

Example

Warning
BLOAD does not perform an address range
check. It is possible to load a file anywhere in
memory. Be careful not to load over GW
BASIC or the operating system.

10 ‘Load a machine language program
20 ‘into memory at 60:F000
30‘Restore Segment to GW BASIC’s OS.
40 DEF SEG
50 ‘Load PROG1 into the DS.
60 BLOAD “B:PROG1”,&HFOOO

Example 10 ‘Load the screen buffer
20 ‘Point segment at screen buffer
30 DEF SEG=&HB800
40 ‘Load FILE1 into screen buffer
50 BLOAD “FILET’,0

Note the DEF SEG statement in 20 and the
offset of 0 in 30: this guarantees that the
correct address is used.

7-9

BSAVE
Command

Saves sections of the main memory on the
specified file.

Syntax BSAVE {filespec 1 pathname}
,offset, length

filespec is a string expression which specifies the name of the file to
be saved, with an optional device. If the device is omitted,
the MS-DOS default drive is assumed.

offset is an integer expression in the range 0 to 65535. This is the
offset into the segment declared by the last DEF SEG.
Saving starts at this position.

length is an integer expression in the range 1 to 65535, specifying
the length of the memory image to be saved.

Remarks A memory image file is a byte-for-byte copy of
what is in memory.

BSAVE saves assembly language programs
on diskette.

7-10

BSAVE
Command

The BLOAD and BSAVE statements also
allow you to load and save any portion of
memory. For instance, you can save and
display screen images (specifying the screen
buffer as the current segment by a DEF SEG
statement).

A DEF SEG statement should be executed
before the BSAVE. The last known DEF SEG
address is always used for the save.

Example 10 'Save PROG1
20 DEF SEG = &H6000
30 BSAVE "PR0G1 ”,&HFOOO,256

Example

This example saves 256 bytes starting at
6000:F000 in the file “PROG1”.

10 'Save the screen buffer
20 'Point segment at screen buffer
30 DEF SEG-&HB800
40 'Save screen buffer in FILE1
50 BSAVE "A:FILE1 ”,0,16384

The DEF SEG statement must be used to set
up the segment address to the screen buffer.
The offset of 0 and the length 16384 specify
that the entire 16K screen buffer is to be saved.

7-11

CALL
Statement

« j J Transfers control to a machine language
subroutine.

Syntax CALL numvar [(variable [,variable]...)]

numvar is a numeric variable. It must equate to the starting memory
offset address of the assembly routine. The address is an
offset into the current memory segment as set by the last
DEF SEG statement.

variable is a numeric or string variable which serves as an argument
to pass data between the main program and the assembly
routine.

Remarks The CALL statement is one way to transfer
program flow to an external subroutine. You
can also transfer control to an external
subroutine with the USR function.

Example 110 MYROUT = &HD000
120 CALL MYROUT (l,J,K)

7-12

CALLS
Statement

The CALLS statement is the same as the
CALL statement with the exceptions given
below under “Remarks.”

Syntax CALLSnumvar[(variable!, variable] . . .)]

numvar is a numeric variable. It contains the address that is the
starting point in memory of the subroutine being CALLed

variable is a numeric or string variable which has to be passed as an
argument to the machine language subroutine.

Remarks The CALLS statement is similar to CALL,
except that the segmented addresses of all
arguments are passed. (CALL passes
unsegmented addresses). CALLS should be
used when accessing routines written with
FORTRAN calling conventions, since all
FORTRAN parameters are call-by-reference
segmented addresses.

CALLS uses the segment address defined by
the most recently executed DEF SEG
statement to locate the routine being called.

7-13

CDBL
Function

Syntax

Example

Converts a given numeric expression to a
double precision number.

CDBL (numexp)

10 A=454.67
20 PRINT A;CDBL(A)
RUN

454.67 454.6700134277344
Ok

Note
A and CDBL (A) do not have precisely the
same value due to the difference in the way
that single and double precision numbers are
stored internally. For more information, see
the Appendix on Advanced Features.

7-14

CHAIN
Statement

Transfers control and passes variables to _
another program.

Syntax CHAIN [MERGE] filespec[, [linenum]
[, [ALL] [,DELETE range]]]

filespec is a string expression which specifies the name of the called
program file and optionally the drive. If the drive is omitted
the MS-DOS default drive is assumed.

linenum is a line number or an expression that evaluates to a line
number in the called program. It is the starting point for
execution of the called program. If it is omitted, execution
begins at the first line. The parameter is not affected by a
RENUM command.

range the range of line numbers to be deleted if the delete option is
used.

7-15

CHAIN
Statement

Remarks

If the Merge option is used, a MERGE
operation is performed with the current
program and the CHAINed program. The
CHAINed program must be an ASCII file. If
any lines in the disk file have the same line
numbers as lines in the program in memory,
the lines from the file on disk will replace the
corresponding lines in memory. (MERGEing
may be thought of as “inserting” the program
lines on disk into the program in memory).
The MERGE option leaves the files open,
preserves the current OPTION BASE setting,
and preserves variable types and user-defined
functions, for use by the CHAINed program.

User-defined functions should be placed before
any CHAIN MERGE statements in the
program. Otherwise, the user-defined
functions will be undefined after the merge is
complete.

If the MERGE option is omitted, the
CHAINing program is lost (except common
variables) before loading the CHAINed
program. CHAIN does not preserve variable
types or user functions. Thus, any DEFtype or
DEF FN statements containing shared
variables must be repeated in the CHAINed
program.

If the ALL option is used, every variable in the
current program is passed to the CHAINed
program.

7-16

CHAIN
Statement

If the ALL option is used and ‘linenum’ is
omitted, a comma must hold the place of
‘linenum’. For example:

100 CHAIN “NEXTPROG”„ALL

is correct, but:

100 CHAIN “NEXTPROG”,ALL

is incorrect. In this case, GWBASIC assumes
that ALL is a variable name and evaluates it
as a line number.

If the ALL option is omitted, the current
program must contain one or more COMMON
statements to list the variables that are
passed. (See the COMMON statement in this
chapter).

If the DELETE option is used, a section of the
current program (specified by a ‘range’ of line
numbers) will be deleted before loading the
CHAINed program.

DELETE is often used with MERGE and ‘line’
options, to load overlays. After an overlay is
brought in, it is usually desirable to delete it so
a new overlay may be brought in.

Note:
Before running a CHAINed program, CHAIN
carries out a RESTORE. This resets the
pointer to the beginning of the internal Data
statements.

7-17

CHAIN
Statement

Example 1 10 * THIS PROGRAM DEMONSTRATES
20 * CHAINING USING COMMON
30 * TO PASS VARIABLES
40 * SAVE THIS MODULE ON DISK
50 * AS “PR0G1 ” WITH THE A OPTION.
60 DIM A$(2),B$(2)
70 COMMON A$(),B$()
80 A$(1)=“C0MM0N VARIABLES NEED”
90 A$(2)=“VALUES BEFORE CHAINING.”

100 B$(1)=” ”: BS(2) =” ”
110 CHAIN “PR0G2”
120 PRINT: PRINT B$(1): PRINT
125 PRINT B$(2): PRINT
130 END

10 ‘ THE STATEMENT “DIM A$(2),B$(2)”
20 * MAY ONLY BE EXECUTED ONCE.
30 * HENCE, IT DOES NOT APPEAR
40 * IN THIS MODULE.
50 * SAVE THIS MODULE ON THE DISK
60 * AS“PR0G2”USING THE A
70* OPTION.
80 COMMON A$(),B$()
90 PRINT: PRINT A$(1);A$(2)

100 B$(1)=“CHAIN TO LINE 90”
110 BS(2)=“TO SKIP DIM”
120 CHAIN “PR0G1”,90
130 END

7-18

CHAIN
Statement

Example 2 10 * THIS PROGRAM DEMONSTRATES
20 ‘ CHAINING USING THE MERGE
30 ‘ AND ALL OPTIONS.
40 ‘ SAVE THIS MODULE ON THE DISK
50 ‘ AS "MAINPRG”.
60 A$=“MAINPRG”
70 CHAIN MERGE “OVRLAY1”,1010,ALL
80 END

1000 * SAVE THIS MODULE ON THE DISK
1010 * AS “0VRLAY1” USING THE A
1015 ‘ OPTION.
1020 PRINT AS; “ HAS CHAINED TO ”
1025 PRINT “ 0VRLAY1 ”
1030 A$=“OVRLAY1”
1040 B$“0URLAY2”
1050 CHAIN MERGE “0VRLAY2”,1010, ALL,

DELETE 1000-1050
1060 END

1000 ‘ SAVE THIS MODULE ON THE DISK
1010‘AS“0VRLAY2” USING THE A
1015 * OPTION.
1020 PRINT AS; “ HAS CHAINED”
1025 PRINT “ TO ”;B$;
1030 END

7-19

Syntax

pathname

CHDIR
Command

Changes the current directory.

CHDIR pathname

is a string expression identifying the new directory which is
to be the current directory

ROOT

SALES ACCOUNTING

WILMA

FRED EMIL ANDY

Assuming that the diskette on drive B has the
directory structure illustrated above, to change
the current directory from ROOT to
ACCOUNTING enter:

CHDIR “B:\ACCOUNTING”

ACCOUNTING is now the current directory
on drive B. To change the current directory
from ACCOUNTING to ANDY enter:

CHDIR “ANDY”

7-20

CHR$
Function

Returns a one-character string whose ASCII
decimal code is the value of the argument.

Syntax CHR$ (n)

n is an integer expression which must be in the range 0 to 255.
It represents an ASCII code. If it is out
side the specified range, an “Illegal Function Call” is
returned.

Remarks CHR$ is normally used to send a special
character to an output device. For instance,
the BEL character (CHR$(7)) could be sent as
a preface to an error message, or a form feed
(CHR$(12)) could be sent to clear a terminal
screen and return the cursor to the home
position.

Examples 100 PRINT CHR$(7) BEEP

150 PRINT CHRS(LINEFEED°lol

200 IF CHR$(INP(IN.PORT°/o))=“A” THEN
210 GOSUB100

7-21

CINT
Function

Syntax

Remarks

Example

Converts any numeric argument to an integer
by rounding the fractional portion.

CINT (numexp)

If “numexp” is not in the range -32768 to
32767, an “Overflow” error occurs.
If the fractional portion of “numexp” is >=.5
the integer part is rounded up; otherwise a
truncation occurs.

See the CDBL and CSNG functions for details
on converting numbers to the double precision
and single precision data type, respectively.
See also the FIX and INT functions, both of
which return integers.

Ok
PRINT CINTC45.67)

46

Ok
PRINT CINT(-3.71)
-4
Ok

7-22

CIRCLE
Statement

Draws a circle (or an ellipse) with the specified
center and radius (Graphics mode only).

Syntax CIRCLE (x,y),radius[,color[,start,end
[,aspect]]]

x,y are numeric expressions, specifying the coordinates of the
center of the circle (or ellipse). They may be given in absolute
form, or in relative form if STEP is included.

radius is a numeric expression returning a positive integer value. It
is the radius of the circle, or the major axis of the ellipse. It is
measured in pixels in the horizontal direction if aspect < 1,
and in vertical direction if aspect > 1.

color is an integer expression in the range 0 to 3. It is the color
number of the circumference (or ellipse). See the COLOR
graphics statement (current screen mode) for details.

start,end are numeric expressions specifying angles in radians. The
range is from -2*PI to 2*PI, where PI = 3.141593. They
specify where the drawing of the circle (or ellipse) will begin
and end.

aspect is a numeric expression returning a positive value. Due to
the nonuniform distribution of the pixels on the screen, you
must specify a value of ‘aspect’ to draw a true circle with
different monitors. The default value of ‘aspect’ is 5 6 in
medium and super resolution and 5/12 in high resolution.
This value produces a circle with the standard monitor.

7-23

CIRCLE
Statement

Drawing Circles and Ellipses

The CIRCLE statement draws circles if you do
not specify the “aspect” parameter, and
ellipses if you specify a value of “aspect”
different from the default value (5/6 in
medium and super resolution, and 5/12 in
high resolution).

The “aspect” may be thought of as a fraction,
with a separate numerator and denominator.
The numerator tells GW BASIC how many
rows the CIRCLE statement should consider
equivalent to the number of columns specified
by the denominator.

If “aspect” is less than one, then “radius” is
measured in pixels in the horizontal direction
i.e., it is the x-radius. In this case GW BASIC
draws ellipses with the same width, and varies
the height.

If “aspect” is greater than one, the y-radius is
given, and GW BASIC draws ellipses with the
same height and varies the width.

For example:

100 CIRCLE (100,150),50,5/18

will draw a horizontal ellipse with an x-radius
of 50 pixels.

7-24

CIRCLE
Statement

Drawing Arcs

The CIRCLE statement can simply draw part
of a circle (or ellipse) i.e. an “arc.”

To draw an arc you must enter the “start” and
“end” parameters. They specify the first and
the second arc endpoint in radians.

The angles are positioned in the standard
mathematical way, with 0 to the right and
going counterclockwise.

For example, the following statement specifies
just a quarter of a circle:

10 CIRCLE (100,1501,50,1,0,3.141593/2

The angles must be measured in radians. If
you have the angles in degrees, you must
convert them to radians before executing the
CIRCLE statement. To convert from degrees
to radians, multiply by 0.0174532.

CIRCLE
Statement

Drawing Rays

The CIRCLE statement can draw a ray from
the center of the arc to either arc endpoint. A
negative endpoint generates a ray to that
endpoint. The endpoint, -0, is not treated as a
negative endpoint. To circumvent this
limitation, use a small negative number (e.g.
-0.001 instead of -0). When both endpoints
are negative, both rays are drawn. The minus
sign does not affect the arc itself, i.e. the
angles will be treated as if they were positive.
Note that this is different from adding 2*PI
(where PI is 3.141593). The start angle may be
greater or less than the end angle. For
example:

100 CIRCLE (100,1501,50,1,
-0.001,-3.141593/2

will draw a quarter of a circle delimited by two
rays.

Last Point Referenced

The last point referenced after a circle (or
ellipse) has been drawn is the center of the
circle (or ellipse).

Clipping

Points that are off the screen or the graphics
viewport are not drawn by the CIRCLE
statement.

7-26

CIRCLE
Statement

Example

STEP Option

Coordinates can be shown as absolutes or the
STEP option can be used to reference a point
relative to the most recent point used.

For example, if the most recent point
referenced was 100,50, then:

either

CIRCLE (200,2001,50

or

CIRCLE STEP (100,1501,50

will draw a circle at 200,200 with radius 50.
The first example uses absolute notation; the
second uses relative notation.

The following example draws three
intersecting circles and colors the area of
intersection.

5 SCREEN 1
10 COLOR = 0,0,3,0
20 CLS
30 CIRCLE (100,1201,90
40 CIRCLE (150,1301,120
50 CIRCLE (250,1201,100
60 PAINT (180,1201

7-27

CLEAR
Command

Clears all numeric variables to zero, all string
variables to null, and closes all open files.
Options set the highest memory location
available for use by GW BASIC, and the
amount of stack space.

Syntax CLEAR [, [memory] [, stack]]

memory is an expression representing a memory location which, if
specified, sets the top of memory (i.e. the maximum extension
of the GW BASIC Data Segment)

stack is an integer expression whose value sets aside stack space
for GW BASIC. The default is 512 bytes or one-eighth of the
available memory, whichever is smaller.

Remarks The “memory” parameter should be specified
to reserve space in storage for assembly
language routines, the “stack” parameter to
use several nested GOSUBs, FOR.. .NEXT
loops, or PAINT to paint complex pictures.

GW BASIC allocates string space
dynamically. An “Out of string space” error
occurs only if there is no free memory left for
GW BASIC to use.

7-28

CLEAR
Command

If a value of 0 is given for either expression,
the appropriate default is used. The default
stack size is 512 bytes, and the default top of
memory is the current top of memory. The
CLEAR statement performs the following
actions:

• closes all files

• clears all COMMON variables

• resets the stack and string space

• resets all simple numeric variables and
numeric array elements to zero.

• resets all simple string variables and string
array elements to null

• releases all disk buffers

• resets all DEF FN, DEFINT/SNG/DBL/STR,
DEF SEG and DEF USR statements.

Examples CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

CLOSE
Statement

Syntax

filenum

Remarks

Example

Terminates I/O to a file or device. CLOSE is
usually used in a program.

CLOSE [[#] filenum[, [#]filenum]...]

is the number under which the file was OPENed. A CLOSE
with no arguments closes all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE statement. The file may then be
reOPENed using the same or a different file
number; likewise, the file number may now be
reused to OPEN any file.

A CLOSE for a sequential output file writes
the final buffer of output.

The END statement and the NEW command
always close all disk files automatically.
(STOP does not close disk files.)

To read the data in a sequential file open for
output or append, you must first CLOSE the
file and then re-OPEN it in the “I” mode. If
the file DATA was opened for output as #1:

100 CLOSE #1
110 OPEN “I”, #1,“DATA”

7-30

CLS
Statement

Syntax

n

Remarks

Erases all or part of the screen.

CLS [n]

is an integer expression in the range 0 to 2.

CLS without a parameter clears the entire
screen to the current text background color,
unless a graphics viewport has been defined,
and resets the function key line (if the function
key display is enabled). If a viewport has been
defined, the current viewport only will be
cleared to the graphics background color.
Outputting a formfeed character (typing
CTRL L or PRINT CHR$(12);, will have the
same effect).

CLS 0 clears the entire screen, resetting the
function key display.

CLS 1 clears the graphics viewport to the
graphics background color (in one of the
graphics modes). If no viewport has been
defined, this will have no effect.

7-31

CLS
Statement

Example

CLS 2 clears the text window to the text
background color, without resetting the
function key display.

CLS not only erases all or part of the screen,
but also returns the cursor to the upper
lefthand corner of the screen (in Text Mode).

If you are in Graphics Mode, CLS makes the
“last referenced point” the center of the screen.

The screen can also be cleared by pressing
CTRL HOME or by modifying the screen
mode using the SCREEN statement, or the
width using the WIDTH statement.

10 CLS ‘ Clears the screen (or
20 * the current viewport)
60 CLS 0 1 Clears whole screen
90 CLS 1 ‘ Clears the graphics
100 1 viewport
110 CLS 2 1 Clears the text window

7-32

COLOR
Statement

Text Mode

Sets the text foreground and background
colors (Text Mode only).

Syntax COLOR [foreground] [,background]
[[,dummy]

foreground is a numeric expression rounded to the nearest integer. It
must be in the range 0 to 31. It selects the character
foreground color.

background is a numeric expression rounded to the nearest integer. It
must be in the range 0 to 15, but it is interpreted modulo 8,
thus only values from 0 to 7 are taken into consideration.

dummy this parameter is allowed for compatibility with other
BASICs. It will have no effect. It may specify border color on
other systems.

Remarks (Color Text Mode)

If you enable color (see the SCREEN
statement) or the color hardware is installed
(Standard monitor), the following colors are
allowed for “foreground”:

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 White 15 High-intensity White

7-33

COLOR
Statement

Text Mode

To make characters blink for a specific color,
you should set “foreground” equal to 16 plus
the color number

You may select only colors 0 through 7 for
“background.”

Remarks In a monochrome system the following values
can be used for “foreground.”

• 0 Black

• 1 Underlined character with white foreground

• 2-7 White

Adding 8 to the number of the desired color
gives you the color in high-intensity.

You can make the character blink by adding
16 to the number of the desired color.

For “background” you may select the
following values:

0-6 Black
7 White

7-34

COLOR
Statement

Text Mode

Remarks Foreground and background colors may be
equal. In this case any character displayed is
invisible. Changing the foreground or
background color will make subsequent
characters visible again.

Any parameter may be omitted. Omitted
parameters assume the old value.

Upon initialization, the default values are:

• foreground = 7 (White)

• background = 0 (Black)

That is, if no COLOR statement exists in your
program, the system assumes:

COLOR 7,0

Examples 100 COLOR 0,2

This sets a black foreground on a green
background in color mode and a black
foreground on a black background, i.e.
invisible characters, in B/W mode.

150 COLOR 15,1

This sets a high-intensity white on a blue
background in color mode, and a high
intensity white on a black background in B/W
mode.

7-35

COLOR
Statement

Possible
Errors

Text Mode

If the COLOR statement ends in a comma (,),
a “Missing operand” error is returned, but the
color will change. For example:

COLOR 2,

is invalid

If you enter a value outside the range 0 to 255
an “Illegal function call” error is returned.
Previous values are retained.

7-36

COLOR
Statement

Syntax

background

palette

Remarks

Medium-resolution Graphics

Defines the background and foreground
palette colors.

COLOR [background] [,[palette]

is a numeric expression rounded to the nearest integer. It
must be in the range 0 to 15. It selects color for the character
background. It defaults to 0 (Black) if unspecified.

is a numeric expression rounded to the nearest integer. It
must be in the range 0 through 255. This selects one of 2
palettes for the color numbers 1, 2 and 3 that may be
specified in a graphics statement.

Palette
0
1

Color 1
Green
Cyan

Color 2
Red
Magenta

Color 3
Yellow
White

Palette 0 is selected, when ‘palette’ is an even number.
Palette 1 is selected, if ‘palette’ is an odd number.

When you enter a CIRCLE, DRAW, LINE,
PAINT, PRESET, or PSET statement in your
program, you can specify a color number of 0,
1, 2, or 3. This parameter selects the color from
the current “palette” as defined by the COLOR
statement.

If you do not specify a color number, the
default is color 3.

When you display text the character
foreground will be color number 3. The
character background will be set by the color
statement.

Any parameter may be omitted in the COLOR
statement. Omitted parameters assume the old
value.

7-37

COLOR
Statement

Upon initialization the default values are:

• background =0
• palette =1

That is, if no COLOR statement exists in your
program, the system assumes:

COLOR 0,1

Examples

The use of memory for color and monochrome
in medium-resolution mode is identical. The
modes differ only in that the two bits of a pixel
are interpreted differently by the hardware:
B/W medium resolution displays 4 shades of
grey.

10 SCREEN 1,0
20 COLOR 10,1

Sets the palette background to light green, and
selects palette 1 (Cyan, Magenta, White).

100 COLOR,0

The background stays light green and palette
0 is selected.

7-38

COLOR
Statement

High- and Super-resolution Graphics

Defines the graphics and text foreground
colors.

Syntax COLOR [foreground] [, dummy]

foreground is a numeric expression rounded to the nearest integer. It
must be in the range 0 to 15. This specifies both graphics and
text foreground color and defaults to White (color 7). The
background color is always black.

dummy is ignored in this mode.

Remarks When you enter a CIRCLE, DRAW, LINE,
PAINT, PRESET, or PSET statement in your
program, you can specify a color number of 0,
1, 2, or 3. A color of 0 indicates black and
colors of 1, 2, 3 will be shown in the foreground
color.

7-39

Example

COLOR
Statement

If you do not specify a color number, the
default is white (color 7).

Any parameter in the COLOR statement may
be omitted. Omitted parameters assume the
old values. Upon initialization default values
are:

• foreground =7(White)

That is, if no COLOR statement exists in your
program, the system assumes:

COLOR 7

SCREEN 2
COLOR 14

This selects a yellow foreground on a black
background.

7-40

COM(n)
Statement

Syntax

n

COM(n) ON

COM(n) OFF

COM(n) STOP

Example

Enables or disables event trapping of
communications activity on the specified
channel

COM (n) {ON I OFF I STOP}

is an integer expression that specifies the number of the
communications channel. It may be 1, 2, 3, or 4.

enables communications event trapping. While trapping is
enabled, and if a non-zero line number is specified in the ON
COM(n) GOSUB statement, GW-BASIC checks between
every statement to see if activity has occurred on the
communications channel. If it has, the ON COM(n) GOSUB
statement is executed.

event takes place, it is not remembered.

disables communications event trapping, but if an event
occurs it is remembered, and ON COM(n) will be executed as
soon as trapping is enabled.

10 COM(1) DIM

Enables error trapping of communications
activity on channel 1.

7-41

COMMON
Statement

Defines a common area which is not erased by
the CHAINed program, and allows you to pass
variables from one program to another.

Syntax COMMON variable [,variable]...

variable is the name of a numeric or string variable which is required
to be passed to the CHAINed program. For array variables
place a set of parentheses “()” after the variable name.

Remarks The COMMON statement is used in
conjunction with the CHAIN statement.
COMMON statements may appear anywhere
in a program, though it is recommended that
they appear at the beginning.

The CHAINed program need not specify,
through the use of COMMON statements, the
common variables specified by the CHAINing
program. The CHAINed program will use
those variables with the same names specified
in the CHAINing program. Each type
definition statement (DEFINT, DEFSNG,
DEFDBL, DEFSTR) referring to common
variables, must precede the associated
COMMON statements and must be repeated
in the CHAINed program.

7-42

COMMON
Statement

Common variables must always be initialized
within the CHAINing program. Common
arrays must be explicitly described by DIM
statements in the CHAINing program (but not
in the CHAINed program, otherwise a
“Duplicate definition” error occurs). The DIM
statements must be written before the
associated COMMON statements.

Example
10 REM PG1
20 COMMON A1,B1,C1,D1$

■

80 CHAIN “A:PG2”
90 END

10 REM PG2
20 PRINT A1.B1.C1,01$
120 END

The above example shows that the CHAINed
program need not specify, through the use of
COMMON statements, the common variables
specified by the CHAINing program.

In our example the values of the variables Al,
Bl, Cl, and Dl$ in the program PG1 are
passed to the CHAINed program PG2, which
displays them.

7-43

COMMON
Statement

The DIM statement must be written before the
associated COMMON statement.

Example
10 REM PG1
20 DEFDBL C1
30 COMMON A1,B1,C1,D1$

■

90 CHAIN “A:PG2”
100 END

10 REM PGS
20 DEFDBL C1

130 END

Each type definition statement (DEFINT,
DEFSNG, DEFDBL, DEFSTR) referring to
common variables, must precede the
associated COMMON statement and must be
repeated in the CHAINed program. (Note the
statements DEFDBL, both with PG1 and
PG2.)

7-44

COMMON
Statement

Example
10 REM PG1
20 DIM A1 (15,20)
30 COMMON A1(),B1,C1

■

100 CHAIN “A:PG2”
110 END

10 REM PG2

■

50 PRINT A1(1,1)

■

90 END

A COMMON statement can also specify array
names. Such specifications are followed by a
pair of parentheses.

Each use of common array must be explicitly
described by a DIM statement in the
CHAINing program (but not in the CHAINed
one, otherwise a “Duplicated Definition” error
occurs).

The DIM statement must be written before the
associated COMMON statement.

7-45

COMMON
Statement

Example
10 REM modi
20 A=1:B=2
30 COMMON A,B
50 COMMON C
60 CHAIN “mod3”

10 REM mod2
20 A=1:B=2
30 COMMON A
40 GOTO 60
50 COMMON B
60 CHAIN “mod3”

10 REM mod3
20 PRINT A;B

For example, when executing program “modi”
an “Illegal function call in 50” is issued, as
variable C has not been initialized. When
executing program “mod2” instead, program
“mod3” is CHAINed: it displays both A and B
variables, even if statement 50 of “mod2” is
jumped over.

7-46

CONT
Command

Resumes program execution after a CTRL-
BRE AK has been typed or a STOP or END
statement has been executed. CONT should
only be used in immediate mode.

Syntax CONT

Remarks Execution resumes at the point where the
break occurred. If the break occurred after a
prompt from an INPUT statement, execution
continues with the reprinting of the prompt
(’?” or prompt string).

CONT is usually used in conjunction with
STOP for debugging. When execution is
stopped, intermediate values may be examined
and changed using direct mode statements.
Execution may be resumed with CONT or a
direct mode GOTO, which resumes execution
at a specified line number.

CONT may not be used to continue execution
after an error has occurred. CONT is also
invalid if the program has been modified
during the break.

7-47

CONT
Command

Example

10 INPUT A,B
20 TEMP- a-::-b
30 STOP
40 FINAL= TEMP+300: PRINT FINAL
RUN
? 32, 2.4
Break in 30
Ok
PRINT TEMP

76.8
Ok
CONT

376.8
Ok

7-48

cos
Function

Syntax

Remarks

Example

Returns the cosine of the argument.

COS (numexp)

The argument “numexp” represents the angle
in radians.

The calculation of the COS function is
performed in single precision, unless “/D” is
supplied in the GW BASIC command line.

10 X=2-X-C0S(.4)
20 PRINT X
RUN

1.842122
Ok

7-49

CSNG
Function

Converts any numeric argument to a single
precision number.

Syntax CSNG (numexp)

Remarks See the CINT and CDBL functions for
converting numbers to the integer and double
precision data types, respectively.

Example

10 A# = 975.342123217685
20 PRINT A#; CSNG(A#)
RUN

975.342123217685 975.3421
Ok

7-50

CSRLIN
Function

Syntax

Remarks

Example

Returns the current line (row) position of the
cursor.

CSRLIN

CSRLIN returns a value in the range 1 to 25.
To return the current column position use the
POS function. (See the POS function in this
chapter.)

10 Y = CSRLIN
20 X = POSCO)
30 LOCATE 24,1
35 REM PRINT
40 LOCATE Y,X

‘Record current line.
‘Record current column.
:Print “HELLO”
HELLO on last line.
‘Restore position to old
line, column.

7-51

CVI, CVS, CVD
Functions

Converts string values to numeric values.

Syntax 1 CVI(2-byte-string)

Syntax 2 CVS(4-byte-string)

Syntax 3 CVD(8-byte-string)

Remarks Numeric values that are read in from a
random file buffer must be converted from
strings back into numbers.

CVI converts a “2-byte-string” to an
integer.

CVS converts a “4-byte-string” to a single
precision number.

CVD converts an “8-byte-string” to a double
precision number.

See also “MKI$, MKS$, MKD$” functions,
later in this chapter.

Example

70 FIELD #1,4 AS l\l$, 12 AS B$
80 GET #1
90 Y=CVS(IM$)

7-52

DATA
Statement

Syntax

constant

Remarks

Creates an “internal” file, i.e., a sequence of
data belonging to the program. Each data
item can then be assigned to a program
variable by a READ statement. A DATA
statement should only be used in a program.

DATA constant!, constant] . . .

is a numeric or string constant. Any numeric format (i.e.,
integer, hexadecimal, octal, single or double precision) is
acceptable for numeric constants. String constants in DATA
statements must be surrounded by double quotation marks
only if they contain commas, colons, or significant leading
or trailing spaces. Otherwise, quotation marks are not
needed.

DATA statements are non-executable and may
be placed anywhere in the program. A DATA
statement may contain as many constants as
will fit on a line (separated by commas). Any
number of DATA statements may be used in a
program.

A DATA statement in a program need not
correspond to a specific READ statement. This
is because before program execution, a data
file (the “internal file” as it is often called) is
created. It contains all the values of all the
DATA statements in the program in line
number sequence. When the program is
executed, READ takes its values from this file.

7-53

DATA
Statement

Example

The data-type of an entry in the data sequence
must correspond to the type of the variable to
which it is to be assigned; i.e., numeric
variables require numeric constants as data
(conversion from one numeric type to another
is allowed, for example you may have a single
precision floating point constant associated
with an integer variable) and string variables
require quoted or unquoted strings as data.

DATA statements may be re-read from the
beginning by use of the RESTORE statement.

Ok
10 PRINT “CITY”, “STATE”, “ZIP”
20 READ C$,SS,Z
30 DATA “BIRMINGHAM,”
35 DATA “ALABAMA,12345”
40 PRINT C$,S$,Z
RUN
CITY STATE ZIP
BIRMINGHAM, ALABAMA 1245
Ok

7-54

DATE$
Function and Statement

Retrieves the date (as a function), or sets the
date (as a statement).

Syntax 1 stringvar = DATE$
Used as a function

Syntax2

Remarks

DATE$ = stringexp
Used as a statement

As a function, the current date is fetched and
assigned to the string variable “stringvar”
The DATE$ function may also be used in any
string expression in a LET or PRINT
statement.

As a statement, the current date is set. In this
case DATE$ is the target of a string
assignment.

The date may also have been set by MS-DOS
prior to entering GW BASIC.

Rules

• If “stringexp” is not a valid string, a “Type
Mismatch” Error will result. Previous values
are retained.

• For “stringvar” = DATES, DATES returns a 10
character string in the form “mm-dd-yyyy”
where mm is the month (01 to 12), dd is the
day (01 to 31) and yy is the year (1980 to 2099).

7-55

DATES
Function and Statement

• For DATE$ = “stringexp,” “stringexp” may be
one of the following forms:

“mm-dd-yy”
or
“mm/dd/yy”
or
“mm-dd-yyyy”
or
“mm/dd/yyyy”

If the month or day is specified by the use of
only one digit, GW BASIC assumes a 0 (zero)
in front of it. If the year is specified by the use
of one digit (y), GW BASIC assumes the year
to be 200y; if two digits are specified (yy), the
year will be 19yy.

If any of the values are out of range or
missing, an “Illegal function call” error is
issued. Any previous date is retained.

Example DATES = “01 -01 -83“
Ok
PRINT DATES
01-01 -1983
Ok

7-56

DEF FN
Statement

Defines and names user-written function. A
DEF FN statement may only be used in a
program.

Syntax DEF FN name[(argument[,argument]...)]=
expression

name a legal variable name beginning with FN. No blanks may be
inserted between FN and the remainder of the name and the
first character after FN must be a letter.

argument a “dummy” variable that is to be replaced by the cor
responding argument value when the function is called.

expression an expression that performs the operation of the function.
The type of expression must agree with the type (numeric or
string) of the function, specified by ‘name.’

Remarks In the DEF FN statement, variable names serve
only to define the function; they do not affect
program variables that have the same name. A
variable name used in a function definition may
or may not appear in the argument list. If it
does, the value of the parameter is supplied
when the function is called. Otherwise, the
current value of the program variable is used.

7-57

DEFFN
Statement

The variables in the argument list represent, on
a one-to-one basis, the argument variables or
values that are to be given in the function call.

User-defined functions may be numeric or
string. The type of the function is specified by
“name.” The type of the expression must match
the type of the function, otherwise a “Type
mismatch” occurs. If the function is numeric the
value of the expression is forced to that type
before the function value is returned.

If a DEF FN statement has not been executed
before the function it defines is called, an
“Undefined user function” error occurs.

Example 400 R=1:S=2
410 DEF FI\IAB(X,Y)=X 3/Y 2
420 T=FI\IAB(R,S)

Line 410 defines the function FNAB. The
function T will contain the value (R * 3)
divided by (S * 2) or .25.

7-58

DEF SEG
Statement

Assigns the current segment of memory.

Syntax DEF SEG [-address]

address is a numeric expression returning an unsigned integer in the
range 0 to 65535. The address specified identifies the
segment address used by BLOAD, BSAVE, PEEK, POKE,
DEF USR, and CALL.

If‘address’ is omitted, then the segment to be
used is set to GW BASIC’s data segment (i.e.,
the beginning of your user workspace in
memory). This is the initial default value.

If‘address’ is specified, then it will be based
upon a 16 byte boundary. For the BSAVE,
PEEK, POKE, or CALL statement, the value
is shifted left 4 bits to form the Code Segment
address for the subsequent call instruction.
Note: GW BASIC does not check if the
resultant segment is valid.

DEF SEG
Statement

If you enter a value outside the range, then an
“Illegal Function call” error results. Previous
value will be retained.

If you do not separate DEF and Seg by at least
one blank, GW BASIC would interpret the
statement:

DEFSEG=150

to assign the value 150 to the variable
DEFSEG

10 DEF SEG=&HB800 ‘Set segment to
15 'Screen buffer
20 DEF SEG 'Restore segment to
25'GW BASIC’s DS

Note that in statement 10 the screen buffer is
at absolute address B8000 hex, as the last
hexadecimal digit is dropped on the DEF SEG
statement.

7-60

DEF USR
Statement

Enables access to a machine language
subroutine by specifying the starting address.
The subroutine may be subsequently called by
the associated USR function. DEF USR is
usually used in a program.

Syntax DEF USR [n] = offset

n may be any digit from 0 to 9. The digit corresponds to the
number of the USR routine whose address is being specified.
If ‘n’ is omitted, DEF USRO is assumed.

offset Offset is an integer expression in the range 0 to 65535.

Remarks Any number of DEF USR statements may
appear in a program to redefine subroutine
starting addresses, thus allowing access to as
many subroutines as necessary. To obtain the
starting address of a subroutine, GW BASIC
adds the value of “offset” to the current
segment value.

Example 1OODEFSEG=O
200 DEF USR0=24000
210 X=USRO(Y ~ 2/2.89)

7-61

DEFINT/SNG/DBL/STR
Statements

Declare the variable type in accordance with
the letter(s) specified . These statements are
usually used in a program.

Syntax DEF type letter[-letter][,letter[~letter]] . . .

type is INT, SNG, DBL, or STR. No space should be entered
between DEF and INT, SNG, DBL, or STR.

letter represents a letter from the alphabet (A-Z)

Remarks Any variable names beginning with the
letter(s) specified in “range of letters” will be
considered. The type of variable specified by
the “type” declaration character (%,!,#,$)
always takes precedence over a DEFtype
statement.

If no type declaration statements are
encountered, GW BASIC assumes all variables
without declaration characters are single
precision variables. DEFtype statements must
precede the use of the defined variables.

Example 1ODEFDBLL-P
All variables beginning with the letters L, M,
N, O, and P will be double precision variables.

1ODEFSTR A
All variables beginning with the letter A will
be string variables.

10 DEFINT l-IMjW-Z
All variable beginning with the letters I, J, K,
L, M, N, W, X, Y, Z will be integer variables.

7-62

DELETE
Command

Erases program lines. DELETE is usually
used in immediate mode.

Syntax DELETE [linenuml][- [linenum2]]

linenuml first line to be erased.

linenum2 last line to be erased.

Remarks GW BASIC always returns to command level
after a DELETE is executed. If either
“linenuml” or “linenum2” does not exist, an
“Illegal function call” error occurs. A period (.)
can be used instead of the line number to
indicate the current line.

DELETE 80
Deletes line 80.

DELETE 80-120
Deletes lines 80 through 120, inclusive.

DELETE -80
Deletes all lines up to and including line 80.

DELETE 80-
Deletes all lines from line 80 through the end
of the program.

7-63

DIM
Statement

Syntax

array

subscripts

Remarks

Specifies the array name, the number of
dimensions and the subscript upper bound per
dimension. The DIM statement may specify
one or more arrays.

DIM array (subscripts)!,array
(subscripts)] . . .

is a valid array name. Any legal variable name may be used,

refers to one or more numeric expressions which specify the
array dimensions. Each subscript must be separated from
the next by commas. The number of subscripts specifies the
number of dimensions, and the value of each specifies the
subscript upper bound.

If an array name is used without a
corresponding DIM statement, the maximum
value of the array’s subscript(s) defaults to 10.
If a subscript is used that is greater than the
maximum specified, a “Subscript out of range”
error occurs. The minimum value for a
subscript is always 0, unless otherwise
specified with the OPTION BASE statement.

If no DIM is specified, the first reference to an
array element in the program will create the
array with the specified number of
dimensions. For example, if a program
statement refers to: AR1(3,5,1O).

Then ARI is created with 3 dimensions and a
default upper bound of 10 for each dimension.

7-64

DIM
Statement

The DIM statement sets all numeric array
elements to an initial value of zero and
elements of string arrays to null strings.

Theoretically, the maximum number of
dimensions allowed in a DIM statement is 255
and the maximum number of elements per
dimension is 32767. In reality, however, these
numbers are limited by line length and
memory size.

If you try to redimension an array without
first erasing it, a “Duplicate Definition” error
occurs. You must first use the ERASE
statement to erase an array before
redimensioning it.

Number of Elements per Dimension

no DIM is used
OPTION BASE 0 is set 11 elements (subscripts 0-10

are allowed in each dimen
sion)

OPTION BASE 1 is set 10 elements (subscripts 1-10
are allowed in each dimen
sion)

DIM is used
OPTION BASE 0 is set the number of elements in

each dimension is calcu
lated by adding 1 to each
upper bound subscript

OPTION BASE 1 is set the number of elements in
each dimension coincides
with each upper bound sub
script

7-65

DIM
Statement

To Define an Array

1 Establish the subscript lower bound. Use OPTION BASE 1
or adopt the default OPTION BASE 0.

2 Assign a name to the array using a DIM statement.

3 Establish the number of dimensions using the DIM state
ment.

4 Establish the subscript upper bounds per dimension using
the DIM statement.

If you do not dimension an array, its implicit
dimensions are the default values described in
remarks.

• a DIM statement cannot be preceded by an
array reference

• a DIM statement does not set the subscript
upper bound per dimension, in case it is
jumped over.

Examples 10 DIM A(5),B$(20,30j15)

10 INPUT I
20 DIM ARRAYKI)
30 FOR K=0 TO I
40 READ ARRAYKK)
50 NEXT

7-66

DIM
Statement

Example

Example

10 DIM A(20)
20 FOR l=0 TO 20
30 READ ACI)
40 NEXT I

LIST
10 1=1
20 GOTO 40
30 DIM A(50)
40 A(10)=3
50 A(11)=45
Ok
RUN
Subscript out of range in 50
Ok

The system displays:

Subscript out of range in 50

When statement 50 is executed, as statement
30 is jumped over and an upper bound of 10 is
assumed by default.

7-67

DRAW
Statement

Draws an object as specified by the contents of
a string expression. (Graphics Mode only)

Syntax DRAW stringexp

stringexp is a string expression which defines an object which is
drawn when GW BASIC executes the statement, ‘stringexp’
is one or more of the movement commands below.

Remarks The DRAW statement combines most of the
capabilities of the other graphic statements
into an easy-to-use object definition language
called “Graphics Macro Language. ”A GML
command is a single character or a pair of
characters within the string “stringexp,”
optionally followed by one or more arguments.

Movement
Macros

Each of the following movement commands
begin movement from the current graphics
position. This is usually the coordinate of the
last graphics point plotted with another GML
command, LINE, or PSET. The current
position defaults to the center of the screen
when a program is RUN.

7-68

DRAW
Statement

U[n]

D[n]

L[n]

R[n]

E[n]

F[n]

G[n]

H[n]

Move up. The number of points moved is n * scale factor (set
by the S command below). If ‘n’ is omitted 1 is supplied.

Move down. The number of points moved is n * scale factor
(set by the S command below). If ‘n’ is omitted 1 is supplied.

Move left. The number of points moved is n * scale factor (set
by the S command below). If ‘n’ is omitted 1 is supplied.

Move right. The number of points moved is n * scale factor
(set by the S command below). If ‘n’ is omitted 1 is supplied.

Move diagonally up and right. The number of points moved
is n * scale factor (set by the S command below). If ‘n’is
omitted 1 is supplied.

Move diagonally up and left. The number of points moved is
n * scale factor (set by the S command below). If‘n’is omitted
1 is supplied.

Move diagonally down and left. The number of points
moved is n * scale factor (set by the S command below). If
‘n’is omitted 1 is supplied.

Move diagonally down and right. The number of points
moved is n * scale factor (set by the S command below). If‘n’
is omitted 1 is supplied.

7-69

DRAW
Statement

Mx,y Move absolute or relative. If ‘x’ is preceded by a plus (+) or
minus (-), ‘x’ and ‘y’ are added to the current graphics
position, and connected with the current position by a line
(move relative). Otherwise, a line is drawn to point‘x,y’ from
the current position (move absolute).

Move without plotting any points. B may precede any of the
above mentioned movement commands.

Move but return to original position when finished. N may
precede any of the above mentioned movement commands.

Further GML Commands

Set angle‘n’. ‘n’may range from Oto 3, where 0 is 0 degrees, 1
is 90, 2 is 180, and 3 is 270. Figures rotated 90 or 270 degrees
are scaled so that they will appear the same size as with 0 or
180 degrees on a monitor screen with the standard aspect
ratio of 4/3.

Rotate angle ‘n’. ‘n’ is equivalent to degrees in the range -360
to 360. If ‘n’ is positive, rotation is counter-clockwise, if‘n’ is
negative, rotation is clockwise. If ‘n’ is outside the specified
range, an “Illegal function call” error occurs.

Set color ‘n’ (from 0 to 3 in medium resolution, and 0 to 1 in
high or super resolution).

7-70

DRAW
Statement

Sn Set scale factor, ‘n’ may range from 1 to 255. The scale factor
multipled by the distances given with U,D,L,R,E, F,G,H or
relative M commands gives the actual distance traveled.

Xstringexp Execute substring. This powerful command allows you to
execute a second substring from a string.

Pn,m ‘n’ is the color chosen to paint the interior of the closed figure
and ‘m’ is the border color. You must specify both para
meters or an error will occur. Both parameter can range
from 0 to 3 in medium resolution and from 0 to 1 in high or
super resolution mode.

Remarks In all GML commands, “n,” “x,” and “y”
arguments can be constants like “327” or
‘-numvar;.” The semicolon is necessary if you
enter a variable this way or if you use the X
command, otherwise you can omit the
semicolon between commands. Spaces are
ignored in “stringexp.” For example:

M+=A;,-=B;

Examples To draw a box:

10 SCREEN 1
20 A=40
30 DRAW “U=A; R=A; L=A;”

10 U$=“U30;” : D$=“D30;”
15 L$=“L40;” : R$=“R40;”
20 BOX$=U$+R$+D$+L$
30 DRAW “XBOXS;”
40 REM DRAW “XU$;XR$;XD$;XL$;”
50 ‘would have drawn the same box

7-71

EDIT
Command

Lets you change a program line. EDIT is only
used in immediate mode.

Syntax EDIT {linenuml.}

linenum is the program line number. If no such line exists, an
“Undefined Line number” error message is displayed.

Alternatively a period can be used instead of a line number
to refer to the current line.

Remarks When you enter an EDIT command,
GW BASIC displays the specified line and
positions the cursor under the first digit of the
line number. The line may then be modified by
using the special editor keys.

The EDIT command can be used to redisplay
and edit a line which has just been entered.
(The line number symbol always refers to
the current line).

LIST may also be used to display program
lines for editing.

Example EDIT 500
500 PRINT AS.BS.CS

7-72

END
Statement

Terminates program execution, closes all open
data files, and returns to command level. END
is only used in a program.

Syntax END

Remarks END statements may be placed anywhere in
the program to terminate execution. Unlike
the STOP statement, END does not cause a
“Break in line nnnnn” message to be printed.
An END statement at the end of a program is
optional. GW BASIC always returns to
command level after an END is executed.

Example 520 IF K>1000 THEN END ELSE GO
TO 20

7-73

ENVIRON
Statement

Syntax

parm-id

Remarks

Allows modification of parameters in GW
BASIC’s Environment String Table.

ENVIRON parm

is a valid string expression containing the new Environ
ment String parameter

The ENVIRON statement may be used, for
example, to change the “PATH” parameter for
a child process. Parameters may also be
passed to a child process by inventing a new
environment parameter.

Rules

9 “parm-id” is the name of the parameter such
as “PATH”.

• “parm-id” must be separated from 'text’ by
or ‘ ‘ (blank) such as “PATH-’. ENVIRON
takes everything to the left of the first blank or
“=” as the “parm-id,” and everything to the
right as ‘text’.

• “text” is the new parameter text. If “text” is a
null string, or consists only of (a single
semicolon, such as “PATH-;’) then the
parameter (including “parm-id-)” is removed
from the Environment String Table and the
Table is compressed.

7-74

ENVIRON
Statement

• If “parm-id” does not exist in the
Environment String Table, then “parm-id” is
added at the end of the Environment String
Table.

• If “parm-id” does exist, it is deleted, the
Environment String Table is compressed and
the new “parm-id” is added at the end.

Examples The following MS-DOS command will create a
default “PATH” to the Root Directory on Disk
A:

PATH=A:
The PATH may be changed to a new value by:

ENVIRON“PATH =A:SALES;
A:ACCOUNTING”

A new parameter may be added to the
Environment String Table:

ENVIRON “SESAME-PLAN”
The Environment String Table now contains:

PATH=A:SALES;A:ACCOUNTING
SESAMEPLAN

If you then entered:

ENVIRON “SESAME=;”

then you would have deleted SESAME, and
you would have a table containing:

PATH=A:SALES;A:ACCOUNTING

7-75

ENVIRON
Statement

Possible
errors

• “Type mismatch” — if “parm” is not a string.

• “Out of Memory” — if the Environment Table
is full and no more can be allocated.

7-76

ENVIRONS
Function

Allows you to retrieve the specified
Environment String from GW BASIC’s
Environment String Table.

Syntax ENVIRONS [(parm) 1 (nthparm)]

parm is a string expression containing the parameter to be
retrieved

nthparm is an integer expression returning a value in the range 1 to
255

Remarks • If a string argument is used, ENVIRONS
returns a string containing the text following
“parm=” from the Environment String Table.

• If uparm=” is not found, or no text follows
“parm=” then a null string is returned.

• If a numeric argument is used, ENVIRONS
returns a string containing the “nth_ parm”
from the Environment String Table including
the “parm”=text”

• If there is no “nth_ parm” then a null string is
returned.

Possible
errors

“Illegal function call” — If “nth-parm” is out of
range.
“Type Mismatch” — If “parm” is not a string.
“String too long” — If the string is longer than
255 characters.

7-77

EOF
Function

Syntax

filenum

Remarks

Indicates that the end of a file has been
reached.

EOF (filenum)

is the file number specified in the OPEN statement

For sequential files, the EOF function returns
true (-1) if there is no more data in the file and
false (0) if end-of-file has not been reached.
Use EOF to test for end-of-file while inputting,
to avoid “Input past end” errors.

EOF is significant only for a file opened for
sequential input from disk, or for a
communications file. A true value (-1) for a
communications file means that the buffer is
empty.

EOF (0) returns the end of file condition on
standard input devices used with redirection of
I/O.

7-78

EOF
Function

Example

5 DIM M(500)
10 OPEN “I”,1 .“DATA”
20 K=0
30 IF E0FC1) THEN 100
40 INPUT #1,M(K)
50 K=K+1:GOTO 30
100 REM PROCESS DATA

This example reads data from the sequential
file named “DATA.” Values are read into
array M until the end of file is reached.

7-79

ERASE
Statement

Syntax

array

Remarks

Example

Releases space and variable names previously
reserved for arrays. The data is lost and the
array(s) no longer exist.

ERASE array [, array] . . .

is the name of an array to be erased.

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array
space in memory may be used for other
purposes. If an attempt is made to
redimension an array without first ERASEing
it, a “Duplicate Definition” error occurs.

It is not good programming practice to reuse
an indentifier. This may generate errors or
reduce the program readability. You may,
however, find it useful to redeclare an erased
array; for example, when an array name is
known by a subroutine and you want to pass
arrays with different number of dimensions of
subscript upper bounds to this subroutine.

10 DIM A(15,15),B(10,20)
100 ERASE A,B
110 DIM A (100),B(2,2,2)

Upon execution of statement 100, arrays A
and B are deleted and the corresponding
memory space is made free. You may define
other arrays (see statement 110) with the same
names but different numbers of dimensions
and upper bounds.

7-80

ERDEV and ERDEV$
Functions

ERDEV is an integer function which contains
the error code returned by the last device to
declare an error.

ERDEV$ is a string function which contains
the name of the device driver which generated
the error.

Syntax

Example

[ERDEV I ERDEV$]

ERDEV is set by the Interrupt X’24’ handler,
when an error within MS-DOS is detected.
ERDEV will contain the INT 24 error code in
the lower 8 bits, and the upper 8 bits will
contain the “Word attribute bits” (bl5-bl3)
from the Device header block. If the error was
on a character device, ERDEV$ will contain
the 8-byte character device name.

If the error was not on a character device,
ERDEV$ will contain the two character block
device name (A:, B:, C: etc).

User installed device driver “MYLPT2” caused
a “Printer out of Paper” error via INT 24.

If the driver’s error number for that problem
was 9, ERDEV contains the error number 9 in
the lower 8 bits and the device header word
attributes in the upper 8 bits.

ERDEVS contains “MYLPT2.”

7-81

ERR and ERL
Functions

The ERR function returns the error code and
the ERL function returns the number of the
line which contains the error.

Syntax [ERRI ERL]

Remarks When an error handling routine is entered, the
function ERR contains the error code and the
function ERL contains the line number of the
line in which the error was detected.

The ERR and ERL functions are usually used
in IF.. .THEN statements to direct program
flow in the error handling routine.

If the statement that caused the error was a
direct mode statement, ERL will contain
65535.

If the line number is not on the right side of
the relational operator, it cannot be
renumbered with RENUM. Because ERL and
ERR are reserved functions, neither may
appear to the left of the equal sign in a LET
(assignment) statement.

GW BASIC error codes are listed in
Appendix A.

7-82

ERR and ERL
Functions

Example

To test whether an error occurred in a direct
statement, use IF 65535=ERL THEN

Otherwise, use

IF ERR=error code THEN
IF ERL=line number THEN

LIST
10 REM RECTANGLES
20 ON ERROR GOTO 70
30 INPUT “Length and Width”;L,W
40 IF (L<0) OR (WCOJ THEN ERROR 200
50 PRINT “Area=’;L-X-W;” L=’;L;” W=’;W
60 GOTO 30
70 IF (ERR=200) AND (ERL=40)

THEN PRINT “L or W<0’:RESUME 30

80 ON ERROR GOTO 0
90 END
Ok
RUN
Length and Width?
-2.5
L or W<0
Length and Width?
2,5
Area= 10 L = 2 W= 5
Length and Width?
C
Break in 30
Ok

7-83

ERR and ERL
Functions

If you enter a negative value for L or W, the
error handling routine is activated and the
system displays:

L or W<0

Execution is resumed at statement 30 (see
RESUME statement below). Note the use of
ERR and ERL functions in the error handling
routine.

7-84

ERROR
Statement

Simulates the occurrence of a GW BASIC
error, or generates a user defined error.

Syntax ERROR n

n is an integer expression representing an error code. It must
be greater than 0 and less than or equal to 255. If it
is not an integer, it is rounded to the nearest integer.

Remarks

If the value of the integer expression equals an
error code already in use by BW-BASIC, then
the ERROR is simulated, and the
corresponding error message will be displayed.

Example LIST
10 S=10
20 T=5
30 ERROR S+T
40 END
Ok
RUN
String too long in line 30
Ok

Or, in immediate mode:
ERROR 15
String too long

7-85

ERROR
Statement

If the value of the numeric expressions is
greater than any error codes used by GW
BASIC, then the ERROR statement will
generate a user-defined error. This user-
defined error code may then be handled in the
error trapping routine (see the ON ERROR
statement in this chapter).

Note: To define your own error, use a value
that is greater than any used by GW BASIC
error codes. (It is preferable to use the highest
available values, so compatibility may be
maintained if more error codes are added to
GW BASIC).

If an error statement specifies a code for
which no error message has been defined,
then GW BASIC responds with the message:
Unprintable error.

7-86

EXP
Function

Returns “e” (base of natural logarithms) to the
power of the argument.

Syntax EXP(numexp)

Remarks “numexp” must be <=87.3365. If EXP
overflows, the “Overflow” error message is
displayed, machine infinity with the
appropriate sign is supplied as the result, and
execution continues.

EXP is calculated in single precision, unless
“/D” is supplied in the GWBASIC command
line.

Example 10X=5
20 PRINT EXPIX-1)
RUN
54.59815
Ok

7-87

FIELD
Statement

Syntax

filenum

width

stringvar

Remarks

Allocates space for variables in a random file
buffer.

FIELD is always used in a program.

FIELD [#]filenum,width AS stringvar
[,width AS stringvar]...

is the number under which the file was OPENed

is the number of characters to be allocated to stringvar

is a string variable name that will be used for random file
access

A FIELD statement must be executed to
format the random file buffer, before a GET
statement or PUT statement can be executed.

The total number of bytes allocated in a
FIELD statement cannot exceed the record
length that was specified when the file was
OPENed. Otherwise, a “Field overflow” error
occurs. (The default record length is 128
bytes.)

Any number of FIELD statements may be
executed for the same file. All FIELD
statements that have been executed remain in
effect at the same time. Each new Field
statement redefines the buffer from the first
character position. There may be multiple
field definitions for the same data.

7-88

FIELD
Statement

Example 1

Do not use a FIELDed variable name in an
input statement or to the left of the equal sign
in an assignment statement. Once a variable
name is FIELDed, it points to the correct place
in the random file buffer. If a subsequent
INPUT or LET statement with that variable
name on the left side of the equal sign is
executed, the variable no longer refers to the
random file buffer, but to the variables stored
in string space.

If previously defined in a FIELD statement, a
variable name may be inserted to the right of
the equal sign in an assignment statement.

10 FIELD 1,20 AS l\l$,10 AS IDS,40 AS ADDS

Allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does NOT place
any data in the random file buffer. (See also
"GET” and “LSET/RSET” in this chapter).

7-89

FIELD
Statement

Example 2 10 OPEN “R”,#1,"A:PH0NELST”,35
15 FIELD #1,2 AS RECNBR$,33 AS DUMMYS
20 FIELD #1,25 AS NAMES,10 AS PHONENBRS
25 GET #1
30 TOTAL=CVI(RECNBR)$
35 FOR 1=2 TO TOTAL
40 GET #1, I
45 PRINT NAMES, PHONENBRS
50 NEXT I

Illustrates a record with multiply defined
fields. In statement 15, the 35 byte field is
defined for the first record to keep track of the
number of records in the file. In the next loop
of statements (35-50), statement 20 defines the
field for individual names and phone
numbers.

Example 3 10 FOR LOOP°lo=0 TO 7
20 FIELD #1,(LOOPO|o-::-16) AS OFFSETS,16 AS A$(LOOP<>fo)
30 NEXT LOOPO/o

Shows the construction of a FIELD statement
using an array of elements of equal size. The
result is equivalent to the single declaration:

FIELD #1,16 AS A$(0),16 AS AS(1) 16 AS A$(6),16 AS A$(7)

7-90

FIELD
Statement

Example 4 10 DIM SIZE°M4°lo): REM ARRAY OE FIELD SIZES
20 FOR LOOP°fo=O TO 4°lo:READ SIZE”/o (LOOPo/o): NEXT LOOP°lo
30 DATA 9,10,12,21,41
120 DIM A$(4°lo): REM ARRAY OF FIELDED VARIABLES
130 DFFSET°lo=O
140 FOR LOOP°lo=0 TO 4«»fo
150 FIELD #1,OFFSET°lo AS OFFSETS,SIZE°lo(LOOP°lo) AS AS(LOOPOfo)
160 OFFSET°lo=OFFSET0/o+SIZE0lo(LOOP°lo)
170 NEXT LOOP°lo

Creates a field in the same manner as Exam
ple 3. However, the element size varies with
each element. The equivalent declaration is:

FIELD #1,SIZE°lo(O) AS AS(O),SIZE°lo(1) ASASI1),
SIZE°lo(4°lo) AS A$(4°lo)

Example 5 10 field#i,225 aststs

Make sure to observe the maximum length
restriction for various variables. For example,
in the FIELD statement above the maximum
length ofTST$ is 255.

7-91

FILES
Command

Displays the names of files in the specified
directory.

Syntax FILES [filespec]

filespec is a string expression including either a filename or a
pathname and optional device designation.

Remarks If “filespec” is omitted, all the files on the
currently selected drive will be listed,
“filespec” is a string formula which may
contain question marks (?) or asterisks (*)
used as wild cards. A question mark will
match any single character in the filename or
extension. An asterisk will match one or more
characters starting at the position. The
asterisk is a shorthand notation for a series of
question marks. The asterisk need not be used
when all the files on a drive are requested, e.g.,
FILES “B:’.

If a filespec is used and no explicit path is
given, the current directory is the default.

7-92

FILES
Command

Examples FILES
Show all files on the current directory

FILES “tf.BAS”
Shows all files with an extension of .BAS

files “A:-::-.-::-”
Shows all files on drive A

FILES “A:”
Equivalent to the preceding example

FILES “GEO?.BAS”
Shows all files on the current directory of the
MS-DOS default drive that have a filename of
4 characters beginning with GEO and an
extension of .BAS

Sub-directories are denoted by <DIR>
following the directory name.

FILES “SALESX”
Lists the files in the subdirectory SALES.

FILES “SALESX-X-.BAS”

Lists the files in the subdirectory SALES that
have the extension .BAS.

7-93

FIX
Function

Syntax

Remarks

Examples

Returns the truncated integer part of the
argument.

FIX (numexp)

FIX (numexp) is equivalent to
SGN(numexp)*INT(ABS(numexp)).
The major difference between FIX and INT is
that FIX does not return the next lower
number for a negative argument.

PRINT FIXI58.75)
58

Ok

PRINT FIXC-58.75)
-58
Ok

7-94

FOR...
Statements

Syntax

numvar

x

y

z

NEXT

Allow a series of statements to be performed
in a loop a specified number of times.

FOR numvar=x TO y [STEP Z]

NEXT [numvar] [,numvar]

is an integer or single-precision variable used as a counter

is a numeric expression representing the initial counter
value

is a numeric expression representing the final counter value

is a numeric expression used as an increment

7-95

FOR ... NEXT
Statements

Remarks The program lines following the FOR
statement are executed until the NEXT
statement is encountered. Then the counter
(numvar) is incremented by the amount
specified by STEP (Z). A check is performed to
see if the value of the counter is now greater
than the final value (Y). If it is not greater,
GW BASIC branches back to the statement
after the FOR statement and the process is
repeated. If it is greater, execution continues
with the statement following the NEXT
statement. This is a FOR ... NEXT loop.

If STEP is not specified, the increment is
assumed to be one. If STEP is negative, the
final value of the counter is set to be less than
the initial value. The counter is decreased
each time through the loop. The loop is
executed until the counter is less than the
final value.

The counter must be an integer or single
precision numeric constant. If a double
precision numeric constant is used, a “Type
mismatch” error results.

The body of the loop is skipped if the initial
value of the loop times the sign of the STEP
exceeds the final value times the sign of the
STEP.

7-96

FOR ... NEXT
Statements

Nested Loops

FOR ... NEXT loops may be nested. A nested
loop may be placed within the context of
another FOR ... NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for
the inside loop must appear before that for the
outside loop. If nested loops have the same
end point, a single NEXT statement may be
used for all of them. A statement of this form:

NEXT V1, V2, V3

performs the same action as this sequence of
statements:

NEXT V1
NEXT V2
NEXT V3

The variable(s) in the NEXT statement may
be omitted, in which case the NEXT statement
matches the most recent FOR statement.

If a NEXT statement is encountered before its
corresponding FOR statement, a “NEXT
without FOR” error message is issued and
execution is terminated.

7-97

FOR... NEXT
Statements

Example 1

Example 2

Example 3

10 K=10
20 FOR 1=1 TO K STEP 2
30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT
RUN

1 20
3 30
5 40
7 50
9 60

Ok

10 J=0
20 FOR 1=1 TO J
30 PRINT I
40 NEXT I

In this example, the loop does not execute
because the initial value of the loop exceeds
the final value.

10 l=5
20 FOR 1=1 TO I+5
30 PRINT I;
40 NEXT
RUN
12345678910

Ok

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set.

7-98

FRE
Function

Syntax

Remarks

Example

Returns the number of bytes in memory not
being used by GW BASIC.

FRE (dummy)

Strings in GWBASIC have variable lengths,
changing each time you assign a value. This
dynamic manipulation of strings can cause
the string space in memory to become
fragmented.

The free function can reorganize the string
space in memory. This housekeeping
consolidates the free space.

The argument to FRE is a dummy argument.
Be patient: housekeeping may take 1 to 1-1/2
minutes.

GW BASIC, itself, initiates housekeeping
when free memory is used up. If you are doing
extensive manipulation of variable length
strings use FRE(“ ”) periodically.

PRINT FRE(O)
14542

Ok

7-99

GET (COM files)
Statement

Reads a specified number of bytes into the
communications buffer.

Syntax GET [#] filenum, length

filenum is an integer expression returning a valid file number

length is an integer expression returning the number of bytes to be
transferred into the communications buffer. Length can
not exceed the value set by the /S: switch when GW BASIC
was invoked, or the value optionally given, in the OPEN
statement for the device.

7-100

GET (Files)
Statement

Reads a record from a random disk file into a —
random buffer.

Syntax GET [#] filenum [,recordnum]

filenum is the number under which the file was OPENed

recordnum is the number of the record to be read, in the range 1 to
16,777,215. If it is omitted, the next record (after the last
GET) is read into the buffer.

Remarks The largest possible record number is
16,777,215. After a GET statement is executed,
INPUT# or LINE INPUT# are executed to
read characters from the random file buffer. If
a FIELD statement has been executed, the
characters can be accessed through the
variable defined in the FIELD statement. —

7-101

GET (Files)
Statement

Example

10 OPEN “r”,1 ,“A:RAND”,48
20 FIELD 1,20 AS R1S.20 AS R2$,8 AS R3$
30 FOR L=1 TO 2
40 GET1.L
50 PRINT R1$,R2$,CVD(R3$)
60 NEXT
70 CLOSE 1
80 END
Ok
RUN
Superman USA 11234621
robin hood England 23462101
Ok

This program retrieves information stored in
the specified file. The data read into the buffer
may be accessed by the program. This is done
here by the PRINT statement at line 50. These
data items were written to the file by the PUT-
File statement.

7-102

GET (Graphics)
Statement

Reads graphic images from the screen.

Syntax [GET] STEP(xl,yl)-(x2,y2)array

(xl,yl)-(x2,y2) are coordinates in either absolute or relative form defining a
screen area

array is the name assigned to the array that will hold the image

Remarks The GET statement should be used in
conjunction with the PUT statement. GET
transfers the screen image bounded by the
rectangle described by the specified points
into the array. The rectangle is defined the
same way as the rectangle drawn by the LINE
statement using the “,B” option.

PUT transfers graphics images to the screen.
GET and PUT permit animation and high
speed object motion.

The array must be numeric, but may be any
precision.

7-103

GET (Graphics)
Statement

Array Dimensions

The storage format in the array is as follows:

2 bytes giving x dimension in BITS
2 bytes giving y dimension in BITS

The data for each row of pixels is left justified on
byte boundaries. If the screen image is not an
even multiple of 8 bits, zero padding occurs to
the byte boundary. The required array size in
bytes is:

4+INT((x*bitsperpixed+7)/8)*y

“bitsperpixel” is 2 for medium resolution, and 1
for high and super resolution.

The bytes per element of an array are:

2 for integer
4 for single precision
8 for double precision

7-104

GET (Graphics)
Statement

Example If you want to GET a 10 by 12 image into an
integer array, the number of bytes required is
4+INT((10*2+7)/8)*12 or 40 bytes. You need an
integer array with at least 20 elements.

It is possible to examine the “x” and “y”
dimensions and even the data itself if an
integer array is used. The “x” dimension is in
element 0 of the array, and the “y” dimension
is found in element 1. Integers are stored low
byte first, then high byte, but the data is
transferred high byte first (leftmost) and then
low byte.

7-105

GOSUB.. .RETURN
Statements

GOSUB transfers control to a GW BASIC
subroutine by branching to the specified line.
RETURN transfers control to the statement
following the most recent GOSUB (or
ON... GOSUB) executed, or to a specified line.

Syntax GOSUB linenuml RETURN [linenum2]

linenuml is the first line number of the subroutine

linenum2 is any line of your program different from linenuml and
from the line number of the GOSUB statement

7-106

GOSUB... RETURN
Statements

Remarks A subroutine may be called any number of
times in a program. A subroutine may also be
called from within another subroutine. Such
nesting of subroutines is limited only by
available memory.

The RETURN statement(s) in a subroutine
causes GW BASIC to branch back to the
statement following the most recent GOSUB
or ON.. .GOSUB statement executed. A
subroutine may contain more than one
RETURN statement, if logic dictates a return
at different points in the subroutine.

The “linenum2” option may be included in the
RETURN statement to return to a specific line
number from the subroutine. Use this type of
return with care, however, because any other
GOSUBs, WHILEs, or FORs that were active
at the time of the GOSUB will remain active,
and errors such as “FOR without NEXT” may
result.

Subroutines may appear anywhere in the
program, but it is recommended that the
subroutine be readily distinguishable from the
main program. To prevent inadvertent entry
into the subroutine, precede it with a STOP,
END, or GOTO statement that directs
program control around the subroutine.

If either “linenuml” or “linenum2” does not
exist in the program, an “Undefined line
number” error is returned.

7-107

Example

GOSUB...RETURN
Statements

10 GOSUB 40
20 PRINT “BACK FROM SUBROUTINE”
30 END
40 PRINT “SUBROUTINE”;
50 PRINT “ IN”;
60 PRINT “ PROGRESS”
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

7-108

GOTO
Statement

Transfers control to a specified program line.

Syntax GOTO linenum

linenum is the number of a line in the program

Remarks If linenum is the line number of an
executable statement, that statement and
those following are executed. If it is the line
number of a nonexecutable statement,
execution proceeds at the first executable
statement encountered after linenum. If the
specified “linenum” does not exist in the
program, an “Undefined line number” error is
returned.

Example

10 READ R
20 PRINT “R =’;R,
30 A=3.14-"-R a 2
40 PRINT “AREA =’;A
50 GOTO 10
60 DATA 5,7,12
Ok
RUN
R = 5 AREA = 78.5
R = 75 AREA = 153.86
R = 12 AREA = 452.16
?Out of data in 10
Ok

7-109

GW BASIC
Command

Syntax

Initializes GW BASIC and the operating en
vironment (GWBASIC is an MS-DOS
command, not a GW BASIC command).

[GWBASIC [filespec] [<stdin] [>stdout]
[/F:number of files] [/S:lrecl]
[/C:buffer size]
[/M:[highest memory]
[,max block size]] [/D] [/I]

Options beginning with a slash (/) are called
switches. A “switch” is a means used to
specify parameters.

filespec is a string literal (not included in quotation marks) that
specifies a GW BASIC program file. If the file is present,
GW BASIC proceeds as if a RUN ‘filespec’ command were
given after initialization is complete.

A default extension of .BAS is used if none is supplied and
the filename is less than 9 characters long. The ‘filespec’
option allows GW BASIC programs to be run in batch by
putting this form of the command line in an AUTO
EXEC.BAT file. GW BASIC programs which run this way
will need to exit via the SY STEM command in order to allow
the next command from the AUTOEXEC.BAT file to be
executed.

stdin is a literal string (not included in quotation marks) for the
standard input file specification. GW BASIC input is
redirected from the file specified by ‘stdin’. When present,
this syntax must appear before any switches. (See “Re-direc
tion of Standard Input and Output below).

7-110

GW BASIC
Command

stdout is a literal string (not included in quotation marks) for the
standard output file specification. GW BASIC is redirected
to the file specified by ‘stdout’. When present, this syntax
must appear before any switches. (See “Re-direction of
Standard Output” below).

/F:
this switch sets the maximum number of files that may be
open simultaneously during the execution of a GW BASIC
program. It is ignored unless the /I switch is specified on the
command line. Refer to the /I switch below.

If this switch and the /I switch are present, then the
maximum number of files is set to ‘files’. Each file requires
62 bytes for the File Control Block (FCB) plus 128 bytes for
the data buffer. The data buffer size may be altered via the
/S: option switch. If the /F option is omitted, the number of
files is set to 3.

The number of open files that MS-DOS supports depends
upon the value of the FILES= parameter in the CON
FIG.SYS file. It is recommended that FILES=10 for GW
BASIC. Remember that the first 3 are taken by ‘stdin’,
‘stdout’, ‘stderr’, ‘stdaux’, and ‘stdprn’. One additional file
handler is needed by GW BASIC for LOAD, SAVE, CHAIN,
NAME and MERGE. This leaves 6 for GW BASIC File I/O,
thus /F:6 is the maximum supported by MS-DOS when
FILES=10 appears in the CONFIG.SYS file. Attempting to
OPEN a file after all the file handlers have been exhausted
will result in a “Too many files” error.

7-111

/S:

/C:

GW BASIC
Command

Irecl this switch sets the maximum record length allowed
with random files. It is ignored unless the /I switch is
specified on the command line (refer to the /I switch below).
If this switch and the /I switch are present, then the
maximum record length is set to ‘Irecl’. The record length
option (‘recordlength’) on the OPEN statement cannot
exceed this value. If the /S: option is omitted, the record
length defaults to 128 bytes. The maximum value permitted
for ‘Irecl’ is 32767 bytes.

buffersize if present, controls RS232 Communications. If
RS232 cards are present, /C:0 disables RS232 support. Any
subsequent I/O attempts will result in a “Device
Unavailable” error. Specifying /C:n allocates ‘n’ bytes for
the receive buffer for each RS232 card present. If the /C:
option is omitted, GW BASIC allocates 256 bytes for the
receive buffer of each card present. GW BASIC ignores the
/C: switch when RS232 cards are not present.

7-112

GW BASIC
Command

/M:[highest memory][,max block size]
when present, ‘highest memory’ sets the maximum
number of bytes that will be used as GW BASIC
workspace. GW BASIC will attempt to allocate 64K of
memory for the data and stack segment. If machine
language subroutines are to be used with GW BASIC
programs use the /M: switch to set the highest memory
location that GW BASIC can use. When omitted pr 0. GW
BASIC attempts to allocate all it can up to a maximum of
65536 bytes.

If order to load programs above the GW BASIC workspace
space you must use the optional parameter ‘max blocksize’
to reserve areas for the workspace and your programs.
‘Maxblocksize’ must be in Paragraphs (byte multiples of 16).
When omitted, &H1000 (4096) is assumed. This allocates
65536 bytes (65536- 4096 x 16) for GW BASIC’s Data and
Stack segment. If you require 65536 bytes for GW BASIC
and 512 bytes for machine language subroutines, then use
/M:,&H1010 (4096 paragraphs for GW BASIC + 16
paragraphs for your routines). /M:,2048 says: “Allocate and
use 32768 bytes maximum for data and stack”.
/M:32000,2048 allocates 32768 bytes maximum but
GW BASIC will only use the lower 32000. This leaves 768
bytes available for program space.

7-113

GW BASIC
Command

if present, causes the Double Precision Transcendental
maths package to remain resident. The functions that will
be calculated in double precision if this package is resident
are: ATN, COS, EXP, LOG, SIN, SQR, and TAN. If omitted,
this package is discarded and the space is freed for program
use. The amount of memory required by this package is
approximately 3,000 bytes.

GW BASIC is able to dynamically allocate space required to
support file operations. For this reason GW BASIC does not
need to support the /S and /F switches. However, some
applications are written in such a manner that certain
BASIC internal data structures must be static. In order to
provide compatibility with these BASIC programs,
GW BASIC will statically allocate space required for file
operations based on the /S and /F switches when the /I
switch is specified.

Note
“number of files,” “Irecl,” “buffer size,”
“highest memory” and “max block size” are
numbers that may be Decimal, Octal
(preceded by &0), or Hexadecimal (preceded
by &H).

7-114

GW BASIC
Command

Examples A>GWBASIC PAYROLL
Uses 64k of memory and 3 files, loads and
executes PAYROLL.BAS.

A>GWBASIC INVENT/F:6
Uses 64k of memory and 6 files, loads and
executes INVENT.BAS.

A>GWBASIC /C:0/M:32768
Disables RS232 support and uses only the first
32k of memory.

A>GWBASIC /F:4/S:512
Uses 4 files and allows a maximum record
length of 512 bytes.

A>GWBASIC TTY/C:512
Uses 64k of memory and 3 files, allocates 512
bytes to RS232 receive buffers, load and
execute TTY.BAS.

7-115

GW BASIC
Command

Redirection of Standard Input and
Output

Under GW BASIC you can redirect your Input
and Output. Generally, standard input is read
from the keyboard, but this can be redirected
to any file specified on the GW BASIC
command line. Standard output, generally
written to the screen, can be redirected to any
device or file specified on the GW BASIC
command line.

• When redirected, all INPUT, LINE INPUT,
INPUT$ and INKEY$ statements read from
the “stdin” specified instead of from the
keyboard.

• All PRINT statements write to the “stdout”
specified instead of the screen.

• Error messages go to standard output.

• File input to “KYBD:” reads from the
keyboard.

• File output to “SCRN:” outputs to the screen.

• GW BASIC continues to trap keys from the
keyboard when the ON KEY(n) statement is
used.

• The printer echo key does not cause LPT1:
echoing if Standard Output has been
re-directed.

• Typing CTRL BREAKcauses GW BASIC to
close any open files, issue the message “Break
in line <line number>” to standard output,
exit GW BASIC, and return to MS-DOS.

7-116

GW BASIC
Command

Examples

• When input is re-directed, GW BASIC
continues to read from this source until a
CTRL Zis detected. This condition may be
tested with the EOF function. If the file is not
terminated by a CTRL Z or a GW BASIC file
input statement tries to read past end-of-file,
then any open files are closed. The message
“Read past end” is then written to standard
output, and GW BASIC returns to MS-DOS.

GWBASIC MYPROG >DATA.OUT
Data read by INPUT and LINE INPUT
continue to come from the keyboard. Data
output by PRINT goes into the file
DATA.OUT.

GWBASIC MYPROG CDATA.IN
Data read by INPUT and LINE INPUT comes
from DATA.IN. Data output by PRINT goes
to the screen.

GWBASIC MYPROG <MYII\IPUT.DAT
>MYOUTPUT.DAT
Data read by INPUT and LINE INPUT comes
from the file MYINPUT.DAT and data output
by PRINT goes into MYOUTPUT.DAT.

GWBASIC MYPROG <\SALES\JOHN
TRANS. \SALES\SALES.DAT

Data read by INPUT and LINE INPUT will
now come from the file.

7-117

HEX$
Function

Returns a string which represents the
hexadecimal value of the decimal argument.

Syntax

Remarks

Example

HEX$(numexp)

“numexp” is rounded to an integer before
HEX$ is evaluated. If “numexp” is negative,
the two’s complement form is used.

10 INPUT X
20 A$=HEX$(x)
30 PRINT X “DECIMAL IS “ AS “ HEXADECIMAL”
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCT$ function later in this chapter for
details on octal conversion.

7-118

IF... GOTO ...ELSE
IF...THEN...ELSE
Statements

Syntax 1

Syntax 2

Makes a decision regarding program flow
based on the result of a specified condition.
IF... GOTO... ELSE and
IF ... THEN ... ELSE are usually used in a
program.

IF condition GOTO linenum I ELSE
(statements! linenum)]

IF condition [,] THEN {statements!linenum} [ELSE
{statements!linenum} J

condition may be a numeric, relational, or logical expres
sion. GW BASIC determines whether the con
dition is true or false by testing the result of
the expression for non zero and zero respec
tively. A non zero result is true and a zero
result is false. Because of this, you can test
whether the value of a variable is non zero or
zero by merely specifying the name of the
variable as ‘condition’.

statements are one or more statements. Each statement
must be separated from the preceding one by a
colon (:).

linenum is a line number of the program in memory

7-119

IF...GOTO...ELSE
IF...THEN...ELSE

Statements

Remarks If the result of “condition” is true (not zero),
the GOTO or THEN clause is executed. GOTO
is always followed by a line number. THEN
may be followed by either a line number for
branching or one or more statements to be
executed. If the result of “condition” is false
(zero), the GOTO or THEN clause is ignored
and the ELSE clause, if present, is executed.
Execution continues with the next executable
statement.

Nesting of IF Statements
IF... THEN ... ELSE statements may be
nested. Nesting is limited only by the length
of the line. For example:

IF X>Y THEN PRINT “GREATER”
ELSE IF Y>X THEN PRINT “LESS
THAN” ELSE PRINT “EQUAL”

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the
closest unmatched THEN. For example:

IF A=B THEN IF B=C THEN PRINT
“A=C”
ELSE PRINT “AOC”

will not print “AOC” when AOB.

If an IF.. .THEN statement is followed by a
line number in direct mode, an “Undefined
line” error results, unless a statement with the
specified line number had previously been
entered in indirect mode.

7-120

IF... GOTO... ELSE
IF... THEN...ELSE
Statements

Note
When using IF to test equality for a value that
is the result of a floating-point computation,
remember that the internal representation of
the value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example,
to test a computed variable A against the
value 1.0, use:

IF ABS (A-1.0X1.0E-6 THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than 1.0E-6.

7-121

IF...GOTO...ELSE
IF...THEN...ELSE

Statements

Example 1 200 if 1 then get#u

This statement GETs record number I if I is
not zero.

Example 2 100 if(K20)-:mi>10) then db=i 979-1 :GOTO 300
110 PRINT “OUT OF RANGE”

In this example, a test determines if I is
greater than 10 and less than 20. If I is in this
range, DB is calculated and execution
branches to line 300. If I is not in this range,
execution continues with line 110.

Example 3 210 if ioflag then print as else lprint as

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of the variable
IOFLAG. If IOFLAG is zero, output goes to
the line printer; otherwise, output goes to the
screen.

7-122

INKEY$
Function

Returns either a one or two character string
read from the keyboard. INKEY$ is always
used in a program.

Syntax INKEYS

Remarks INKEY$ returns one of the following values:

• a null string if no character is read from the
keyboard

• a one-character string in accordance with a
single character read from the keyboard

• a two-character string in accordance with an
extended ASCII code. The first character is
zero; the second indicates the scan code of the
key pressed (refer to Appendix C; Extended
Codes).

Although more than one character may be
pending in the keyboard buffer, a single
character only will be read. This value must
then be assigned to a variable before it is used
by the GW BASIC program.

7-123

INKEY$
Function

The following control characters can be
entered at the keyboard, and will not be
passed to the program:

• PRTSC print the screen

• CTRL NUMLOCK set the system to pause

• CTRL BREAK stop the program

• ALT CTRL DEL reset the system

Note that CR is passed to the program like
any character string.

Example 1000 'Timed input Subroutine
1010 RESPONSES^””
1020 FOR l°/o=1 TO TIMELIMIT°/o
1030 A$=INKEY$:IF LEN(A$)=O THEN 1060
1040 IF ASC(A$J=13 THEN TIMEOUT°lo=0:RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT |0f0
1070 TINIEOUT°/o=1 :RETURN

This subroutine returns two values:

• RESPONSE$ which contains the string
entered from keyboard

• TIME0UT% which equals 0 if the user enters
a string of characters from keyboard before a
specified number of loops (TIMELIMIT%);
otherwise equals 1.

7-124

INP
Function

Returns the byte read from a port.

Syntax INP(port)

port

Remarks

is a valid port number in the range 0 through 65535

INP is the complimentary function to the OUT
statement. Allows input from the keyboard
during program execution. INP is only used in
a program.

7-125

INPUT
Statement

Syntax

prompt

variable

Remarks

INPUT[;][prompt$;]variable[$, variable]...

is a string constant enclosed in quotation marks which
prompts for the necessary input

is a numeric or string variable which receives the the input

When an INPUT statement is encountered,
program execution pauses and a question
mark is printed to indicate the program is
waiting for data. If “PROMPT” is included,
the string is printed before the question mark.
The required data is then entered at the
terminal.

A comma may be used instead of a semicolon
after the prompt string to suppress the
question mark.

If INPUT is immediately followed by a
semicolon, then the CR typed by the user to
input data does not echo a CR LF sequence.

The data that is entered is assigned to the
variable(s) given in the variable list. The
number of data items supplied must be the
same as the number of variables in the list.
Data items must be separated by commas.

The variable names in the list may be numeric
or string variable names (including
subscripted variables). The type of each data
item that is input must agree with the type
specified by the variable name. Strings input
to an INPUT statement need not be
surrounded by quotation marks.

7-126

INPUT
Statement

Example

Example

Responding to INPUT with too many or too
few items or with the wrong type of value
(numeric instead of string, etc.) causes the
message “?Redo from start” to be printed. No
assignment of input values is made until an
acceptable response is given.

The user may use all the GW BASIC screen
editor features in responding to INPUT and
LINE INPUT statements.

10 INPUT X
20 PRINT X “SQUARED IS” X eg
30 END
RUN
? 5
5 SQUARED IS 25
Ok

10 Pl=3.14
20 INPUT “WHAT IS THE RADIUS”;R
30 a=pi-::-r o 2
40 PRINT “THE AREA OF THE CIRCLE IS”;A
50 PRINT
60 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 1 71.9464
WHAT IS THE RADIUS?
etc.

7-127

INPUT#
Statement

7 Reads data items from a sequential disk file
and assigns them to program variables.
INPUT# is usually used in a program.

Syntax INPUT#filenum,variable [,variable]—

filenum is the number used when the file was OPENed for input

variable is a numeric or string variable which will receive a data item
from the file. (The type of data in the file must match the
type specified by the variable name). With INPUT#, no
question mark is printed, as with INPUT.

Remarks The data items in the file should appear just
as they would if data were being typed in
response to an INPUT statement. With
numeric values, leading spaces, carriage
returns, and line feeds are ignored. The first
character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a number. The number terminates
on a space, carriage return, line feed, or
comma.

7-128

Example

INPUT#
Statement

If GW BASIC is scanning the sequential data
file for a string item, leading spaces, carriage
returns, and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first character
is a quotation mark (”), the string item will
consist of all characters read between the first
quotation mark and the second. Thus, a
quoted string may not contain a quotation
mark as a character. If the first character of
the string is not a quotation mark, the string
is an unquoted string, and will terminate on a
comma, carriage return, or line feed (or after
255 characters have been read). If end-of-file is
reached when a numeric or string item is
being INPUT, the item is terminated.

100 INPUT#1JX$,Y$1Z$

This example uses the INPUT# statement to
read three strings from a sequential file into
the program.

7-129

INPUT$
Function

Syntax

length

filenum

Remarks

Returns a string of characters read from the
standard input device, the keyboard, or from a
file.

INPUT$(length[,[#]filenum])

is an integer expression specifying the number of characters
to be read from the keyboard or a file

is the file number specifying the file to be read. If you omit
‘filenum’, the keyboard is read by default.

If the keyboard is used for input, no
characters will be displayed on the screen. All
characters including control characters are
passed through except CTRL BREAK which
is used to interrupt the execution of the
INPUT$ function.

When reading COM files, the INPUTS
function is preferred over INPUT# and LINE
INPUT# statements, since all ASCII
characters may be significant in
communications. INPUT# is least desirable
because input stops when a comma (,) or CR is
encountered and LINE INPUT# terminates
when a CR is encountered.

INPUTS allows all characters read to be
assigned to a string. INPUTS will return x
characters from the specified file. The
following statements then are most efficient
for reading a COM file:

7-130

INPUTS
Function

Example 1 5 ‘LIST THE CONTENTS OF A SEQUENTIAL FILE IN HEXADECIMAL
10 OPEN"!”,1,“DATA”
20 IF E0F(1) THEN 50
30 PRINT HEX$(ASC(INPUT$(1 ,#1»);
40 GOTO 20
50 PRINT
60 END

Example 2

Example 3

100 PRINT "TYPE P TO PROCEED OR S TO STOP”
110 X$=INPUT$(1)
120 IF X$="P” THEN 500
130 IF X$=“S” THEN 700 ELSE 100
10 WHILE NOT E0FC1)
20 A$=INPUTS(LOC(1),#1)
30 ...
40 ... Process data returned in AS
50 ...
60 WEND

The above sequence of statements reads:
“.. While there is something in the output
queue, return the number of characters in the
queue and store them in A$. If there are more
than 255 characters, only 255 will be returned
at a time to prevent “String Overflow”. Input
continues until the input queue is empty.
(EOF(l) = true.)”

7-131

INSTR
Function

Searches for the first occurrence of a given
substring in a string, and returns the position
at which the match is found.

Syntax INSTR([start,] string, substring)

start is an integer expression in the range 1 to 255, which
specifies where the search is to begin. If omitted, 1 is
assumed.

string is a string expression (in particular a string constant or
variable) whose value is the string to be searched

substring is a string expression (in particular a string constant or
variable) whose first occurrence is to be reached for

7-132

INSTR
Function

Special Values

start >LEN(string) the returned value is 0

start <1 or
start >255

an error is returned
(Illegal function call)

'string’ is null

'substring’
cannot be found

the returned value is 0

the returned value is 0

'substring’ is
null and start
is specified

the returned value is 'start’

'substring’ is
null and start
is omitted

the returned value is 1

Example 10 X$="ABCDEB”
20 Y$=“B”
30 PRINT INSTR(XJY);INSTR(4,XJY)
RUN

2 6
Ok

Note:

the position at which the match is found is
always evaluated from the beginning of the
original string, even if start is specified.

7-133

INT
Function

Returns the largest integer that is equal to, or
less than the argument.

Syntax INT(numexp)

Remarks Refer to the CINT and FIX functions in this
chapter, which also return integer values.

Examples PRINT INTI99.89)
99
Ok
PRINT INTl-12.11)
-13
Ok

7-134

IOCTL
Statement

Syntax

filenum
string

Remarks

Sends a “Control Data” string to a character
device driver anytime after the driver has been
OPENed.

IOCTL [#] filenum,string

is the file number open to the Device Driver
is a string expression containing the Control Data

IOCTL commands are generally 2 to 3
characters optionally followed by an
alphanumeric argument. An IOCTL command
string may be up to 255 bytes long.

The IOCTL statement works only if:

• The device driver is installed.

• The device driver processes IOCTL strings.

• GW BASIC performs an OPEN on a file on
that device. Most standard MS-DOS device
drivers do not process IOCTL strings and it is
necessary for the programmer to determine
whether the specific driver can handle the
command.

7-135

IOCTL
Statement

If you have installed a driver to replace LPT1
and that driver is able to set page length (the
number of lines to print on a page before
issuing a form feed), then an IOCTL command
to set or change the page length is:

PLn

“n” is the new page length.

Also see the IOCTL$ Function.

7-136

IOCTL
Statement

Example 1 • Open the new LPT1 driver and set the Page
Length to 66 lines:

10 OPEN "LPT1:” FOR OUTPUT AS #1
20 IOCTL #1,“PL66’

Example 2 Open LPT1 with an initial Page Length of 56
lines.

10 OPEN “\DEV\LPT1” FOR OUTPUT AS #1
20 IOCTL #1,“PL56’

You can define other IOCTL commands such
as PTn (set Print Tabs every “n” spaces).

Possible Errors

“Bad file number” - IOCTL to a driver that is
not OPEN.

“Illegal function call” - if device does not
support IOCTL.

“Device Fault” - error in control data.

7-137

IOCTL$
Function

Returns a “Control Data” string from a
Character Device Driver that is OPEN.

Syntax IOCTL$([#] filenum)

filenum is the file number open to the device

Remarks The IOCTL$ function is used to receive
acknowledgement that an IOCTL statement
succeeded or failed or to obtain current status
information.

IOCTL$ can also be used to ask a
communications device to return the current
baud rate, information on the last error,
logical line width, etc.

The IOCTL$ function works only if:

• The device driver is installed.

• The device driver processes IOCTL strings.

• GW BASIC performs an OPEN on a file on
that device.

Also see the IOCTL statement.

7-138

IOCTL$
Function

Example

Possible

10 OPEN “\DEV\FOO” AS #1
20 IOCTL #1 .“RAW” 'Tell device that data
is “RAW”
30 IF IOCTLSM) = “0” THEN CLOSE 1
If Character Driver FOO gives a false return
from the Raw data mode IOCTL request, close
the files and stop processing.

“Bad file number” - IOCTL to a driver that is
Errors not OPEN.

“Illegal function call” - device does not support
IOCTL.

7-139

KEY
Statement

(Function Keys)

The Key statement performs two entirely
different classes of functions depending on the
syntax you use. Syntax 1 performs one of the
following:

• Sets a function key to act as a “Soft Key”, that
is, to automatically type any sequence of
characters

Enables or disables the function key display
from the 25th line of the screen

Displays the function key values on the screen

Syntax 1

Syntax 2 defines special key sequences so that
you can trap for them using the Key (N)
Statement.

KEY [OFF ONI LISTIn,stringexp]

n

stringexp

is the ‘key number’. A constant or a numeric expression in
the range of 1 to 10.
is a string expression assigned to the key. String constants
should be enclosed in quotation marks. The ‘stringexp’
value may be up to 15 characters long. Longer strings are
truncated to 15 characters.

7-140

KEY
Statement
(Function Keys)

Options KEY OFF erases the Soft Key display from
the bottom line, making this line available for
your GW BASIC program. You can use
LOCATE 25,1 followed by PRINT to display
data on the bottom line of the screen. KEY
OFF does not disable the function keys.

KEY ON causes the Soft Key values to be
displayed on the bottom line of the screen. If
the screen width is 80, all ten Soft Keys are
displayed. Five Soft Keys are displayed if the
width is 40. In either case, only the first 6
characters of each key value are displayed.

If fewer than the total number of function keys
are displayed, you can scroll the function key
display (increasing the number of the leftmost
key displayed by one each time) by pressing
<CTRL> <T>. ON is the default state.

KEY LIST displays all Soft Key values on the
screen, with all 15 characters of each key
displayed.

KEY n,stringexp sets function key n. Any
one or all of the ten Function Keys may be
assigned up to a 15 byte string by KEY
n,stringexp. When the key is pressed, the
associated string is input to GW BASIC.

7-141

KEY
Statement

(Function Keys)

The Soft Keys default to the following values:

Fl - LIST <space>
F3 - LOAD”
F5 - CONT <CR>
F7 -TRON <CR>
F9 - KEY <space>

F2 - RUN <CR>
F4 - SAVE”
F6-,“LPT1:” <CR>
F8 - TROFF <CR>
F10-SCREEN 0,0,0<CR>

Remarks • If the function key number is not in the range
1 to 10, an “Illegal function call” error is
produced.

• The key assignment string may be 1 to 15
characters in length. If the string is longer
than 15 characters, the first 15 characters are
assigned.

• Assigning a null string (string of length 0) to a
Soft Key disables the Function Key as a Soft
Key.

• When a Soft Key is assigned, the INKEY$
function returns one character of the Soft Key
string per invocation.

7-142

KEY
Statement
(Function Keys)

Examples 50 KEY ON
Displays the Soft Keys on the bottom line.

60 KEY OFF
Erases Soft Key display.

70 KEY 1, MENU + CHRSC13)
Assigns the string “MENU” CR to soft key 1.
Such assignments might be used for rapid
data entry.

80 KEY 2,
Disables Soft Key 2 as a soft key.

The following routine initializes the first 5
softkeys:

1 KEY OFF 'Turn off key display during
init.
10 DATA KEY1,KEY2,KEY3,KEY4,KEY5
20 FOR 1=1 TO 5:READ SOFTKEYSS(I)
30 KEY l,SOFTKEYS$(l)
40 NEXT I
50 KEY ON ‘now display new softkeys.

7-143

KEY
Statement

(Control Keys)

Syntax 2 of the Key statement defines keys 15
to 20 to allow you to trap any Ctrl-Key, Shift-
Key, or Super-Shift (<ALT>)-Key. These are
often referred to as “user-defined” keys.

Syntax2 KEY n ,
CHR$(shift)+CHR$(scan code)

n is an integer expression in the range 15 to 20

shift is a numeric value corresponding to the following hex values
for the latched keys:

<CAPS LOCK> &H40 (Caps Lock is active)
<NUM LOCK> &H20 (Num Lock is active)

<ALT>
<CTRL>
<SHIFT>

&H08 (Alt Key is pressed)
&H04 (CTRL Key is pressed)
&H01, &H02, &H03

Both the left and right <SHIFT> keys can be
used, where values of &H01, &H02 or &H03 (the
sum of hex 01 and hex 02) denote a <SHIFT>
key.
You can add multiple shift states, such as
<CTRL> and<ALT> keys together, by adding
the associated shift state values.

scancode is a decimal number in the range 1 to 83. It represents the
scan code (in decimal) of the key to be trapped. See Appendix
C for a complete table of scan codes and their associated key
positions.

7-144

KEY
Statement
(Control Keys)

Remarks

Examples

Trapped keys are processed in the following
order:

1 CTRL PRT SC. CTRL PRT SC produces a
printed copy of the screen whether or not you
trap for it.

2 It is not necessary to define Fl to F10 and the
cursor direction keys as trap keys; they are
predefined as trap keys.

3 The user defined keys are examined (15-20).

Any key that is trapped is not passed to GW
BASIC, i.e., it does not go into the keyboard
buffer. This applies to any key, including
CTRL BREAK or CTRL ALT DEL. By
trapping for a key, you can prevent GW
BASIC users from accidentally interrupting a
program or rebooting the system.

See the ON KEY(n) GOSUB statement.

7-145

KEY(n)
Statement

Enables or disables event trapping of the
specified key.

Syntax KEY(n) [ONI OFF STOP]

n is an integer expression in the range 1 to 20, indicating the
key to be trapped:

1-10 function keys Fl to F10
11 Cursor up
12 Cursor left
13 Cursor right
14 Cursor down
15-20 keys defined by the form:

KEY n, CHR$(shift)+CHR$(scancode)

To Enable or Disable KEY(n) Trapping

• If a KEY’n’ ONis executed, KE Y’n’trapping is
enabled

• If a KEY’n’ OFFis executed, KEY’n’trapping
is disabled

• If a KEY’n’ STOP is executed, KEY’n’ trap
ping is suspended. If KEY(n) is pressed, the
event is remembered and an immediate trap
occurs, when a KEY’n’ ON is executed.

7-146

KEY(n)
Statement

Example 10 KEY 4, SCREEN 0,0,0 ‘assign softkey 4
20 KEY (4) ON ‘enables KEY trapping

100 ON KEY (4) GOSUB 1000

Key 4 pressed

1000 REM KEY (4) Trap Routine

7-147

KILL
Command

Deletes a disk file.

Syntax KILL filespec

filespec is a string expression which specifies the file to to be deleted.
The filename must include the extension if one exists.

Remarks KILL checks to see if the file is open, and if so
displays “File already open.” KILL, like
OPEN, cannot distinguish a file in another
directory from one you may have open. You
may get an unexpected “File already open”
error under these circumstances.

KILL can only be used to delete a file. Use the
RMDIR command to remove a directory.

Example 200 KILL “A:DATA1 .DAT”
300 KILL “C:DIR1\DIR2\PROG2.BAS”

7-148

LCOPY
Command

Dumps the screen text to the line printer.

Syntax

screentype

Remarks

LCOPY [screentype]

is an integer expression representing the type of screen in
use

If the parameter “screentype” is not given, or
has the value 0, the text screen is printed on
the current system printer.

If “screentype” is greater than 0, and an INT 5
handler (for dumping the screen) is installed,
INT 5 is executed. Interrupt 5 is a program for
printing the screen bitmap on a graphics
printer.

If “screentype” is greater than 0, and an INT 5
handler is NOT installed, the message “Illegal
function call” is displayed.

7-149

LEFTS
Function

Returns a substring extracting the leftmost
number of characters as specified by the
“length” parameter.

Syntax LEFT$(string , length)

string is a string expression whose value is the string from which
the substring is to be returned

length is an integer expression from 0 to 255 which specifies the
number of the characters to returned.

Remarks If “length” is greater than LEN(string), the
entire original string is returned. If “length” =
0, the null string (length zero) is returned.

Refer to the MID$ and RIGHT$ functions in
this chapter.

Example Ok
10 A$=“GW-BASIC”
20 B$=LEFT$(A$,6)
30 PRINT B$
GW-BAS
Ok

7-150

LEN
Function

Returns the number of characters in a given
string.

Syntax LEN (stringexp)

stringexp is any string expression, whose length is to be returned

Remarks Unprintable characters and blanks are
counted in the number of characters. If the
argument “stringexp” is a null string, LEN
returns zero.

Example 10 X$=“PORTLAND, OREGON”
20 PRINT LEN(XS)
RUN16
Ok

In the above example, there are 16 characters
in the string “PORTLAND, OREGON”
because the comma and the blank space are
included.

7-151

LET
Statement

Assigns a value to a variable.

Syntax [LET] variable = expression

variable is a numeric or string variable which receives the value of
the expression.

expression is the expression whose value is assigned to the variable The
type of expression (numeric or string) must match the type
of the variable; if not, a “Type Mismatch” error occurs.

Remarks In numeric assignments the type of the
expression (integer, single precision or double
precision) may be different from the type of
the destination variable. In this case GW
BASIC converts the expression value to the
type of the variable. Rounding or overflow
may occur in this conversion.

The word LET is optional. The equal sign is
sufficient when assigning an expression to a
variable name.

Examples 110 LET D=12
120 LET E=12/2
130 LET F=12/4
140 LET SUM=D+E+F
150 A(l)=300
160 AS(K)=“ABC”

7-152

LINE
Statement

Syntax

(xl,yl),(x2,y2)

color

B

F

style

Draws either a line or a rectangle, or a filled
rectangle (Graphics Mode only).

LINE [STEP] [(xl,yl)]-[STEP] (x2,y2)
[,[color] [B, [F] [,style]]

represent absolute co-ordinates or relative coordinates if
STEP is included. If (xl,yl) is omitted the last referenced
point is assumed.

is the color number specifying the color in which the line or
rectangle is to be drawn (in the range 0 to 3). Refer to the
COLOR graphics statement for the current screen mode for
details.

represents a rectangle

represents a rectangle to be filled (with color)

is an optional parameter that may be defined by the user to
produce varying line “styles”, i.e., varieties of dotted lines.

7-153

LINE
Statement

Remarks The following example draws a line from the
last point referenced to the point specified
(x2,y2). Since no color is specified, the default
color is the foreground color.

LINE-(x2,y2)

The examples below specify start and end
points in absolute coordinates.

LINE (10,10)-(319,199)
‘draws a diagonal line down the screen
LINE (10,100)-(319,100)
‘draws a horizontal line across the screen

You can specify the color in which the line is
drawn:

LINE (15,15)-(25,25),3
draws a line in color 3

The “b” parameter is used to draw a rectangle
(“box”) in the foreground, where the points
(xl,yl) and (x2,y2) represent the opposite
corners. In the following example, no color
number is specified:

LINE (10,10)-(100,100)„B
draws a box in foreground

Color may be included as follows:

LINE (10,10)-(200,200),2,BF
filled box color 2

7-154

LINE
Statement

The B parameter facilitates the drawing of
rectangles, which would otherwise require the
following lengthy programming format:

LINE (x1,y1)-(x2,y1] LINE (x1,y1)-(x1,y2)
LINE (x2,y1 J-(x2,y2) LINE (x1,y2)-(x2,y2)

BF fills the interior of the rectangle with the
selected color.

Out-of-range coordinates are not visible on the
screen. This is called “line clipping”.

If the relative form is used for the second
coordinate, it is relative to the first coordinate.
For example:

LINE(50,50) -STEPH 5,-13)
draws a line from (50,50) to (65,37).

LINE supports the additional argument
“style.” Style is a 16-bit integer mask used
when putting pixels on the screen. This is
called “Line- Styling”.

7-155

LINE
Statement

Each time LINE plots a pixel on the screen, it
will use the current circulating bit in “style.”
If that bit is 0, no pixel is plotted. If the bit is a
1, then a pixel is plotted. After each pixel, the
next bit position in “style” is selected.

Since a 0 bit in “style” does not clear out the
old contents, the user may wish to draw a
background line before a “styled” line in order
to force a known background.

“Style” is used for normal lines and boxes, but
has no affect on filled boxes.

LINE (0,0)-(160,100),3„&HFF00

The example above draws a dashed line from
the upper left hand corner to the screen center.

7-156

LINE INPUT
Statement

Syntax

prompt

stringvar

Inputs an entire line (up to 254 characters) to a
string variable, without the use of delimiters.
A LINE INPUT statement is only used in a
program.

LINE INPUT [;] [prompt;] stringvar

is a string constant (enclosed in a pair of quotation marks)
that is displayed on the screen before input is accepted. A
question mark is not displayed unless it is part of the
“prompt” string.

is the name of a string variable to which the line is to be
assigned.

7-157

LINE INPUT
Statement

Remarks

Example

All input from the end of “prompt” to the CR
is assigned to “stringvar.” Trailing blanks are
ignored. If a linefeed/carriage return is
encountered, both characters are echoed, but
the carriage return is ignored, the linefeed is
put into “stringvar,” and data input continues.

If LINE INPUT is immediately followed by a
semicolon, then the CR typed by the user to
end the input line does not echo a CR LF
sequence on the screen.

You may use all the GW BASIC screen editor
features in responding to INPUT and LINE
INPUT statements.

See LINE INPUT# statement.

7-158

LINE INPUT#
Statement

Syntax

filenum

stringvar

Remarks

Reads an entire line (up to 254 characters),
without delimiters, from a sequential disk data
file to a string variable.

LINE INPUT# filenum, stringvar

is the number under which the file was OPENed

is the string variable to which the line is to be assigned

LINE INPUT# reads all characters in the
sequential file up to a CR. It then skips over
the CR LF sequence. The next LINE INPUT#
reads all characters up to the next CR. If a LF
CR sequence is encountered, it is preserved.

LINE INPUT# is especially useful if each line
of a data file has been broken into fields, or if
a GW BASIC program saved in ASCII format
is being read as data by another program. (See
“SAVE” in this chapter.)

7-159

LINE INPUT#
Statement

Example 10 OPEN “0”,1,“LIST”
20 LINE INPUT “CUSTOMER “;C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN “I”,1 .“LIST”
60 LINE INPUT #1, C$
70 PRINT CS
80 CLOSE 1
RUN
CUSTOMER? I. JONES 234,4
I. JONES 234,4
Ok

7-160

LIST
Command

Lists the current program to the screen or a
specified file or device.

Syntax LIST [linenuml] [-[linenum2]]
[,{device 1 file spec}]

linenuml
linenum 2 are the line numbers of the first and the last line to be listed.

You may use a period (.) for either line number to indicate the
current line.

device is a string expression for the device specification

filespec is a string expression for the file specification

Remarks If you omit the “device” or “filespec”, the
listing is directed to the screen. You can stop
listings directed to either the screen or the
printer by pressing CTRL BREAK at any ...
time. You cannot interrupt listings directed to
a file or device: the listing continues until the
range is exhausted.

If you omit the line range, the entire program
is listed.

7-161

LIST
Command

The syntax allows the following options:

• If “linenuml” is given, followed by a hyphen,
that line and all higher numbered lines are
listed.

• If only a “linenuml” is given, only that line is
listed.

• If only “linenum2” is given, all lines from the
beginning of the program through the given
line are listed.

• If both numbers are specified, the inclusive
range is listed.

When you direct a listing to a disk file, the
program is saved in ASCII format. You can
later use this file with MERGE.

Examples LIST , LPT1:
List the program to the Line Printer.

LIST 10-90
List lines 10 through 90 to the Screen.

LIST 10- , SCRIM:
List lines 10 through last to the Screen.

7-162

LLIST
Command

Syntax

Remarks

Examples

Lists the current program on the printer.
LLIST is usually used in immediate mode.

LLIST [linenum 1] [-[linenum2]]

The line number ranges are the same as the
LIST command. LLIST assumes a 132-
character-wide printer.

GW BASIC always returns to command level
after an LLIST is executed.

LLIST
Lists a complete program.

LLIST 50
Lists line 50.

LLIST 20-40
Lists lines 20-40

LLIST-150
Lists from the first program line to line 150.

7-163

LOAD
Command

Syntax

filespec

R

Remarks

Examples

Loads a program into memory from a file. You
can then run the program by specifying the
option R.

LOAD [filespec] [,R]

is a string expression which specifies the file to be loaded.

(R) Run is optional. When specified, Run causes the program
to begin execution from the first statement after loading.

LOAD deletes all variables and program lines
currently residing in memory and closes all
open data files before it loads the specified
program. If option R is specified, all open data
files are kept open and the program runs after
it is loaded.

RUN filespec is equivalent to LOAD filespec,
R.

LOAD “STRTRK”,R
Loads and runs the program STRTRK.BAS

LOAD “B:MYPROG”
Loads the program MYPROG.BAS from the
disk in drive B, but does not run the program.

7-164

LOC
Function

Syntax

filenum

Remarks

Example

Returns the current position of the file.

LOC(filenum)

is the number under which the file was OPENed

For random disk files, LOC returns the record
number just read or written from a GET or
PUT Statement. If the file was opened but no
disk I/O has yet been performed, LOC returns
a‘O’.

For sequential files, LOC returns the number
of sectors (128-byte blocks) read from or
written to the file since it was OPENed. Note
that the first sector is read automatically
when the file is opened, so LOC will never
return less than 1 for a sequential file.

For communications files, LOC returns the
number of characters in the input queue
waiting to be read. The input queue can hold
more than 255 characters (determined by the
/C: switch). If there are more than 255
characters in the queue, LOC returns 255.
Since a string is limited to 255 characters, you
do not need to test for string size before
reading data into a string. If fewer than 255
characters remain in the queue, LOC returns
the actual count.

100 IF LOC(2)>100 THEN STOP

7-165

LOCATE (Graphics)
Statement

Moves the graphics cursor to the specified
position. LOCATE may also turn the cursor on
and off and define the shape and blinkrate of
either the overwrite or the user cursor.

Syntax 1 LOCATE [row] [,column] [, [rate] [,
[start] [,stop]]]],

Syntax 2 LOCATE [row] [, [column] [, [rate] [,
[line] [,map]]]],

row is the screen line number. An unsigned integer expression in
the range 1 to 25.

column is the screen column number. An unsigned integer in the
range 1 to 40 or 1 to 80, depending on screen width.

rate is an integer expression in the range 0 to 10

0 Turn both the user and the overwrite cursors off
1 Make the specified cursor non-blinking (the

‘start’ parameter specifies the type of cursor)
2... 10 Blink the specified cursor with a period of ‘rate’

units of 1/18.75 seconds

7-166

LOCATE (Graphics)
Statement

start is the cursor starting scanline. It must be an integer
expression in the range 0 to 15, or 32 to 47. If ‘start’ is in the
range 0 to 15 the overwrite cursor shape is programmed and
a value of rate between 1 to 10 affects the overwrite cursor. If
‘start’ is in the range 32 to 47, the user cursor shape is
programmed, and a non zero value of ‘rate’ affects the user
cursor, not the overwrite cursor. If ‘start’ is in the range 32 to
47, it is taken module 15.

stop is the cursor stop scanline. It must be a numeric expression
in the range 0 to 15.

line if the value of ‘line’ is between 50 and 50+M, byte number
‘line - 50’ of the cursor bitmap for the overwrite cursor is set
to ‘map’. If the value is between 100 and 100+M, then byte
number ‘line -100’ of the cursor bitmap for the user cursor is
set to ‘map’. The value of M is 15 for medium-resolution
mode, 7 for high-resolution mode, and 15 for super-resolution
mode.

7-167

LOCATE (Graphics)
Statement

map

Remarks

if ‘line’ and ‘map’ are specified, this value replaces the
bitmap for scanline ‘line’ of the cursor specified by ‘rate’.
The cursor bitmap is a byte array which is XOR’d with the
screen to display the cursor. For medium-resolution mode,
each scanline of the cursor is represented by 2 bytes; the
low-order byte of each scanline is the left one on the screen.
For other modes, there is one byte per scanline. The size of
the array is the number of scanlines per row of text times the
number of bytes per cursor scanline: this is 8 for high-
resolution mode, and 16 for the other modes. Cursor bitmaps
are kept separately for screen modes 1, 2 and 3. The cursor
state for each mode is restored if another screen mode is
selected, and the original mode is reselected. Likewise,
separate bitmaps are kept for the insert, overwrite and user
cursors.

GW BASIC includes a blinking cursor for
graphics mode. The maximum height of this
cursor is 8 in modes 1 and 2, and 16 in mode 3.
Cursor scanlines are numbered starting with 0
for the top scan line.

The graphics mode as well as in text mode
support three different cursors (see the
LOCATE text Statement).

7-168

LOCATE (Graphics)
Statement

The insert-mode cursor will always be a
rapidly- blinking small triangle at the lower
left of the character cell. The overwrite-mode
cursor is initially an underline which blinks
somewhat more slowly. The user cursor is
initially disabled, but its shape array is loaded
with OFFH bytes, so that it can easily be
made to be any underline or block shape. The
shape of the user and overwrite cursors are
programmable.

LOCATE„0 disables both the user and the
overwrite cursors. Execution of any graphics
statement disables the user cursor (so that the
cursor is removed from screen memory while
the graphics statement is executed). In this
case, the user cursor must be explicitly turned
on to be used later on.

7-169

LOCATE (Graphics)
Statement

Examples 10 LOCATE 5,1,4,2

Moves to line 5, column 1, turns the overwrite
cursor on with a blinkrate 4/18.75 seconds and
sets the height of the cursor to 2. (All scanlines
of the cursor are initialized to &HFE, so 2
scanlines will appear unless the user has
changed the bitmap).

100 LOCATE ,„1,&H82
110 LOCATE ,„2
120 FOR W=1 TO 2000
130 NEXT

Sets the bitmap of the second scanline of the
user cursor to binary 10000010, sets its height
to 2, and displays the user cursor for a couple
of seconds. It will appear as a U-shaped
underline like the initial overwrite cursor.

7-170

LOCATE (Text)
Statement

Moves the cursor to the specified position on
the active page. LOCATE may also turn the
cursor on and off and define the size of either
the overwrite or the user cursor.

Syntax LOCATE [row] [,[column] [, [cursor] [,
[start] [,stop]]]],

row is the screen line number. A numeric expression returning
an unsigned integer in the range 1 to 25.

column is the screen column number. An unsigned numeric
expression returning an unsigned integer in the range 1 to
40 or 1 to 80, depending upon screen width.

cursor is a boolean value indicating whether the user and overwrite
cursors are visible or not. A 0 (zero) indicates off, 1 (one)
indicates on.

start is a numeric expression whose integer value represents the
cursor starting scan line. If ‘start’ is in the range 0-31, ‘start’
and ‘stop’ will affect the overwrite cursor. If ‘start’ has a
larger value, it will be interpreted modulo 32, and ‘start’ and
‘stop’ will change the size of the user cursor.

stop is a numeric expression whose integer value repre- sents the
cursor stop scan line. It must be in the range 0-31.

7-171

LOCATE (Text)
Statement

Remarks In GW BASIC, there are three cursors: the
insert- mode cursor, which appears when
insert-mode is in effect, the overwrite cursor,
which appears when overwrite mode is in
effect (during command entry and input with
the INPUT statement), and the user cursor,
which appears during program execution
when an INPUT statement is NOT being
executed. The overwrite cursor is the one
which appears most of the time.

The overwrite cursor is initialized to an
underline. The insert mode cursor is a half
height block. The user cursor is initially
disabled and undefined. The insert-mode
cursor has a fixed size; the sizes of the
overwrite and user cursor may be changed.

Following a LOCATE statement, I/O
statements to the screen begin placing
characters at the specified location. The user
cursor is normally off during program
execution, but can be turned back on using
LOCATE,,!.

Note that “start” and “stop” parameters
enable you to define the size of the cursor by
indicating the starting and ending scan lines.
The scan lines are numbered from 0 at the top
of the character position. The bottom scan line
is 7 if a color monitor has been installed and
if a BW monitor is used. If you specify “start”
and omit “stop,” this assumes the value of
“start.” If “start” is greater than “stop,” a
two-part cursor will be returned.

7-172

LOCATE (Text)
Statement

Normally, GW BASIC will not print to line 25
because of the soft key display. This can be
turned off, however, using KEY OFF; then use
LOCATE 25,1: PRINT... to display
characters on line 25.

Any parameter may be omitted, and will then
assume the current value.

Errors

Any values entered outside of the ranges
indicated will result in an “Illegal function
call” error. Previous values are retained.

7-173

LOCATE (Text)
Statement

Examples 100 LOCATE 1,1
Moves the cursor to the home position in the
upper left-hand corner.

200 LOCATE „1
Makes the user cursor visible. It’s position
remains unchanged.

300 LOCATE „0
Turns both the user and overwrite cursors off.
This is useful during a program which
displays text or graphics and only uses
INPUT to input keyboard data (INPUT uses
the screen editor).

400 LOCATE 6,1,1,0,7
Moves the overwrite cursor to line 6, column 1.
Makes the cursor visible, covering the entire
character cell, starting at scan line 0 and
ending on scan line 7 (in one of the color
modes).

LOCATE „1,13
Makes the overwrite cursor visible. Its position
remains unchanged. The cursor’s shape will be
a thin horizontal line at the bottom of the
character cell (in monochrome).

LOCATE „1,45
Makes the user cursor visible. Its position
remains unchanged. The cursor’s shape will be
a thin horizontal line at the bottom of the
character cell (in monochrome).

7-174

LOF
Function

Syntax

Remarks

Example

Returns the length of the named file in bytes.

LOF(filenum)

For disk files LOF returns the actual numbers
of bytes allocated to the file.

For communications files LOF returns the
amount of file space in the input buffer. The
actual value returned is:

buffersize-LOC(filenum)

Where “buffersize” is the size of the
communications buffer. It defaults to 256
bytes, but may be changed with the “/C:”
option in the GWBASIC command line.

10 OPEN “B:MYFILE” AS #2
20 GET #2,LOF(2)/128

The above statements will get the last record
of the file MYFILE (residing on the diskette
inserted in drive B) assuming that the file was
created with a record length of 128 bytes.

7-175

LOG
Function

Returns the natural logarithm of a positive
argument.

Syntax LOG(numexp)

Remarks LOG is calculated in single precision, unless
you specify the “/D” option when you invoke
GWBASIC.

If “numexp” is negative or zero an “Illegal
function call” error is returned.

Example PRINT LOGC45/7)
1.860752
Ok

7-176

LPOS
Function

Returns the current position of the print head
within the printer buffer.

Syntax LPOS (printer)

printer is an integer expression whose value (1, 2, or 3) indicates
which printer is to be tested (LPT1:,
LPT2:, or LPT3:).

Remarks LPOS does not necessarily give the physical
position of the print head.

Example 150 IF LPOS(1I>60 THEN LPRINT
CHR$(13)

7-177

LPRINT and LPRINT USING
Statement

Prints data on the printer.

Syntax 1 LPRINT[listofexpressions][,l;]

Syntax 2 LPRINT
USINGformatstring;listofexpressions[,l;]

list of
expressions

this list may include numeric and/or string expressions
separated by commas or semicolons.

format string is a string expression (usually a string constant or variable)
that is composed of special formatting characters.

Remarks These statements are the same as PRINT and
PRINT USING, except that the output goes to
the printer. See PRINT and PRINT USING in
this chapter. LPRINT assumes a 132
character-width printer.

Example 10 AS = “For July__ ”
20 X = .491
30 LPRINT “Results”, AS,
40 LPRINT X
Ok RUN Results For July___491
The result prints on the line printer.

7-178

LSET and RSET
Statements

LSET stores a string value in a random buffer
field left justified, or left justifies a string
value in a string variable. RSET right justifies
the string value.

Syntax LSETstringvar=stringexp
RSETstrmgvar=stringexp

stringvar represents either a regular or fielded string variable (i.e. a
string variable previously used in a FIELD statement).

stringexp represents the string to be left or right justified in a given
field.

Remarks If “stringexp” requires fewer bytes than were
FIELDed to “stringvar,” LSET left-justifies
the string in the field, and RSET right-justifies
the string. (Spaces are used to pad the extra
positions.) If the string is too long for the field,
characters are dropped from the right.
Numeric values must be converted to strings
before they are LSET or RSET. See “MKI$,
MKS$, MKD$” in this chapter. See also
Chapter 4 for a complete description of
random files.

7-179

LSET and RSET
Statements

Examples

150 LSET A$=MKS$(AMT)
160 LSET D$=MKI$(COUI\IT°lo)

LSET or RSET may also be used with a
nonfielded string variable to left-justify or
right-justify a string in a given field. For
example, the program lines:

110 A$=SPACE$(20)
120 RSET AS=I\IS

right-justify the string N$ in a 20-character
field. This is useful when formatting printed
output.

7-180

MERGE
Command

Syntax

filespec

Remarks

Example

Merges the current program with another
program previously saved in ASCII format.

MERGE[filespec]

specifies the file, and optionally a drive. If the drive is
omitted the MS-DOS default drive is assumed.

This command allows you to merge a program
saved (in ASCII format) on a disk, with the
program in memory. MERGE is similar to
LOAD, except that the program in memory is
not erased before the disk program is loaded.
Program lines in the disk program are inserted
into the resident program as if they were typed
on the keyboard. New lines are added and old
lines are updated.

This command allows you to include common
subroutines in all of your programs.

MERGE “B:ROOT\S1\SUBRTN”

7-181

MID$
Function and Statement

Syntax

string

start

length

Remarks

As a function, MID$ returns a substring from
a specified string.

MID$ (string,start[,length])

the string from which the substring is taken.

the character position of the beginning of the returned
string. It must be an integer expression whose value is >0.

the length of the returned string. It must be an integer
expression from 0 to 255.

The function MID$ returns a substring taken
from a specified string, starting from a
specified character position start. The length
of the substring taken can be specified. If
length is omitted or if there are fewer than
length characters to the right of the specified
character position, all characters to the right
of the specified character position are
returned. If length is equal to zero, or if start is
greater than the length of string, then MID$
returns a null string.

Also see LEFT$ and RIGHTS functions in this
chapter.

7-182

MID$
Function and Statement

Example Ok
10 AS = “HELLO”
20 B$ = “JOSEPH JOHNNY JIMMY”
30 PRINT A$;MID$(B$,8,6)
RUN
HELLO JOHNNY
Ok

7-183

MID$
Function and Statement

As a statement, MID$ replaces a section of a
string with another string.

Syntax MIDS(string,start[,length))=substring

string is a string expression whose value is the string from which a
section is to be replaced

start is an integer expression from 1 to 255, whose value specifies
the character position where the replacement is to begin;
‘start’ must be <=LEN (string)

length is an integer expression from 0 to 255. It re- presents the
length of the section to be replaced with substring.

substring is a string expression which replaces the characters in
‘string’, beginning from ‘start’ position

Remarks The characters in “string,” beginning from
“start” position, are replaced by the characters
in “substring.” The optional “length” refers to
the number of characters from “substring”
that will be used in the replacement. If
“length” is omitted, all of the characters of
“substring” are used.

The replacement of characters never goes
beyond the original length of “string.”

7-184

MID$
Function and Statement

Example Ok
10 AS = "AVIGNON, FRANCE”
20 MIDSIAS,10) = "ROUBAIX”
30 PRINT AS
RUN
AVIGNON, ROUBAI
Ok

Note that the original string length was not
changed.

7-185

MKDIR
Command

Syntax

pathname

Example

Makes a new directory on a specified disk.

MKDIRpathname

is a string expression specifying the name of the directory to
be created

Assume that our current directory is the root:

ROOT

PERSONNEL

EMIL ANDY

To create a sub-directory MARKETING from
the root on the current drive, enter:

MKDIR "MARKETING”

To create a sub-directory called FRED under
the directory MARKETING, enter:

MKDIR "MARKETING\FRED”

To create a sub-directory called WILMA under
the directory FRED, enter:

MKDIR "MARKETING\FRED\WILMA”

7-186

MKDIR
Command

The resulting structure will be:

MARKETING
I

FRED
I

WILMA

ROOT
-* 1------------------- 1

PERSONNEL
I I

EMIL ANDY

7-187

MKI$,MKS$,MKD$
Functions

Syntax 1

Syntax 2

Syntax 3

Remarks

Example

Make a string value from a numeric value.

MKI$(integer expression)

MKS$(single precision expression)

MKD$(double precision expression)

Any numeric value that is placed in a random
file buffer with an LSET or RSET statement
must be converted to a string.

MKI$ converts an integer to a 2-byte string.
MKS$ converts a single-precision number to a
4-byte string. MKD$ converts a double
precision number to an 8-byte string.

See also “CVI, CVS, CVD Functions” in this
chapter.

90 AMT=(K-T)
100 FIELD #1,8 AS D$,20 AS NS
110 LSET DSMKDS (AMT)
120 LSET NS=AS
130 PUT #1

7-188

NAME
Command

Syntax

filespec

filename

Remarks

Changes the name of a disk file.

NAME filespec ASfilename

is a string expression which specifies the file to be renamed.
The file must exist on the specified drive. If the drive is not
specified the MS-DOS default drive is assumed. The file
extension does not default to .BAS. Pathnames are not
allowed.

the new name. The new name should not already exist for
another file.

After a NAME command, the file exists on the
same disk, with the new name. The area
allocated to the file is not changed. A file may
not be renamed with a new drive designation.
If this is attempted, a “Rename across disks”
error is generated.

7-189

NAME
Command

Example Ok
NAME “B:GRAPH.BAS” AS
“GRAPH1.BAS”
Ok

In this example, the file that was formerly
named GRAPH.BAS on the diskette in drive
B: will now be named GRAPH1.BAS.

7-190

NEW
Command

Deletes the current program and clears all
variables, so that you can enter a new
program.

Syntax

Remarks

NEW

NEW is entered at command level to clear
memory before entering a new program. GW
BASIC always returns to command level after
a NEW command is executed. NEW closes all
data files and switches off the trace flag in the
same way as TROFF.

7-191

OCT$
Function

Returns a string which is the octal value of the
decimal argument.

Syntax OCT$(numexp)

numexp is a numeric expression from -32768 to 65535, which is
rounded to the nearest integer before OCT$ is evaluated.

Remarks When “numexp” is negative, the two’s
complement form is used.

Example PRINT OCT$(24) 30
Ok
See the HEX$ function in this chapter for
details on hexadecimal conversion.

7-192

ON COM(n) GOSUB
Statement

Syntax

Specifies the first line number of a trap
subroutine to be activated as soon as
characters arrive in the communications
buffer.

The ON COM(n) GOSUB statement is only
used in a program.

ON COM(n) GOSUBlinenum

n is the number of the communications channel (1,2,3, or 4)

linenum is the first line number of the trap routine. A line number of 0
disables the communications event trap.

To Enable or Disable COM Trapping

COM(n) ON COM(n) trapping is enabled

COM(n) OFF COM(n) trapping is disabled

an error trap occurs all event trapping will be disabled (in
cluding ERROR, COM(n), KEY(n), PLAY(n))

COM(n) STOP COM(n) trapping will be suspended i.e. the GOSUB is
not performed, but is performed formed as soon as a COM(n)
ON statement is executed.

7-193

$ON COM(n) GOSUB
Statement

Remarks

Example

To avoid recursive traps a COM(n) STOP is
automatically executed when the trap occurs.

A RETURN from the trap routine
automatically performs a COM(n) ON (unless
a COM(n) OFF was performed within the trap
routine). The RETURN line form may also be
used. Use this form with care because any
other active GOSUB, WHILEs or FORs
remain active and errors (such as “FOR
without NEXT”) may result.

Typically, the COM trap routine reads an
entire message from the COM port before
returning. Do not use the COM trap for single
character messages since, at high baud rates,
the overhead of trapping and reading for each
individual character may cause the COM
interrupt buffer to overflow.

This example sets up a trap routine for the
second communications channel at line 1000.

When a communications event is trapped,
program flow branches to the subroutine
defined by the ON COM(n) GOSUB statement.

100 ON COM(2) GOSUB 1000
110 COM(2) ON
:: 1000 REM COM activity
:1050 RETURN 200

7-194

ON ERROR GOTO
Statement

Syntax

linenum

Remarks

Enables error trapping and specifies the first
line number of a subroutine to be executed if
an error occurs.

The ON ERROR GOTO statement is only used
in a program.

OIM ERROR GOTO linenum

is the first line number of the error trapping routine

To Enable or Disable ERROR Trapping

ON ERROR GOTO n
ERROR trapping is enabled

ON ERROR GOTO 0
ERROR trapping is disabled.
Subsequent errors print an
error message and halt
execution.

If ERROR trapping is enabled and a GW
BASIC error (or a user defined error) is found,
the ON ERROR GOTO line will be executed
and the corresponding routine activated. The
ERL and ERR functions are usually used in
IF...GOTO...ELSE or IF...THEN...ELSE
statements to direct program flow within an
error trapping routine.

7-195

ON ERROR GOTO
Statement

It is recommended that the error trapping
routine execute an ON ERROR GOTO 0 if an
error is found for which there is no recovery
action. (In this case the standard error
message will be displayed and execution will
stop). The RESUME statement resumes
execution after the error handling routine has
been entered (see the RESUME statement in
this chapter). If a GW BASIC error (or a user-
defined error) is found, during the execution of
an error trapping routine the associated error
message is displayed and execution
terminates.

Example

Note: Error trapping does not occur within the
error trapping routine.

10 ON ERROR GOTO 1000
20 INPUTR
30 IF R = 0 THEN ERROR 300

100 IF ERR = 300 THEN PRINT “RADIUS
NEGATIVE OR ZERO”

110 IF ERL = 30 THEN RESUME 20
120 ON ERROR GOTO 0

7-196

ON...GOSUB and ON...GOTO
Statements

ON...GOSUB calls one of several specified
subroutines, depending on the value of a
specified expression. ON...GOTO branches like
on GOSUB but does not return from the
branch.

Syntax 1 ON numexp GOSUB linenum [,
linenum]...

Syntax 2 ON numexp GOTO linenum [, linenum]...

numexp is a numeric expression (from 0 to 255) which determines
which line number in the list to use for branching. If
‘numexp’ is not an integer, it is rounded up to an integer.

linenum is the line number to which the branch is made.

Remarks In the ON...GOSUB statement, each line
number in the list must be the first line
number of a subroutine. If the value of
“numexp” is 1 the subroutine at the first line
number in the list will be called, a value of 2
causes the subroutine at the second line
number in the list to be called and so on. If the
value of “numexp” is zero or greater than the
number of items in the list (but less than or
equal to 255), GW BASIC continues with the
next executable statement. If the value of
“numexp” is negative or greater than 255, an
“Illegal function call” error occurs.

Example 100 ON L-l GOTO 150,300,320,390

7-197

Syntax

n

linenum

ON KEY(n) GOSUB
Statement

Specifies the first line number of a subroutine
to be executed when a specified key is pressed.

The ON KEY(n) GOSUB statement is only
used in a program.

ON KEY (n) GOSUB linenum

is an integer from 1-20. It specifies the key to be be trapped as
follows:

1-10 function keys Fl to Fl 0
11 Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down
15-20 Keys defined in the form:

KEY n, CHR$(shift)+CHR$(scan code)
(See “KEY Statement” in this chapter)

is the list line number of the routine that is to be performed
when the specified function or cursor direction key is
pressed. A line number of 0 disables the event trap.

To Enable or Disable KEY(n) Trapping

KEY(n) ON KEY(n) trapping will be
enabled

KEY(n) OFF KEY(n) trapping will be
disabled

an error trap occurs
all event trapping will be
disabled including ERROR,
COM(n), KEY(n), PLAY(n))

KEY(n) STOP KEY(n) trapping will be
suspended, i.e. the GOSUB is
not performed, but it will be
performed as soon as a
KEY(n) ON is executed.

7-198

ON KEY(n) GOSUB
Statement

Remarks If KEY(n) trapping is enabled and key n was
pressed ON KEY(n) GOSUB is executed and
the corresponding routine activated.

To avoid recursive traps a KEY(n) STOP is
automatically executed, when the trap occurs.
A RETURN from the trap routine
automatically performs a KEY(n) ON (unless
a KEY(n) OFF was performed within the trap
routine).

The RETURN line form may also be used. Use
this form with care, because any other active
GOSUBs, WHILEs, or FORs remain active,
and errors may result.

You cannot use the INPUT or INKEY$
statements to find out which key caused the
trap. If you wish to assign different functions
to particular keys, you must set up a different
subroutine for each key, rather than assigning
the various functions within a single
subroutine.

Example 10 KEY 4,“SCREEN 0,0” ‘assigns softkey 4
20 KEY(4) ON‘enables event trapping
70 ON KEY(4) GOSUB 200

key 4 pressed

200 ‘Subroutine for screen
250 RETURN

In the above, the programmer has overridden
the normal function associated with function
key 4, and replaced it with “SCREEN 0,0”,
which will be displayed whenever that key is
pressed.

7-199

ON KEY(n) GOSUB
Statement

Example 100 KEY 1 5, CHR$(&H04) + CHRSC83)
105 REM Key 15 now is CTRL DEL ww
110 KEY(15) ON

1000 PRINT “If you want to stop processing
for a break”

1010 PRINT “press the CTRL key and the
DEL key at the”

1020 PRINT “same time.”
1030 ON KEY(15) GOSUB 3000.

Operator presses CTRL DEL

3000 REM Suspend processing loop.
3010 CLOSE #1
3020 RESET
3030 CLS
3035 PRINT “Enter CONT to continue.”
3040 STOP
3050 OPEN “A”, #1, “ACCOUNTS.DAT”
3060 RETURN

In the above, the programmer has enabled the
CTRL DEL key to enter a subroutine which
closes the files and stops program execution
until the operator is ready to continue.

7-200

ON PLAY(n) GOSUB
Statement

Specifies the first line number of a subroutine
to be executed when the music buffer contains
fewer than“n” notes. This permits continuous
background music during program execution.

The ON PLAY(n) GOSUB statement is only
used in a program.

Syntax ON PLAY(n) GOSUB linenum

n is an integer expression in the range 1 to 32 .Values outside
this range result in an “Illegal function call” error.

linenum is the first line number of the associated trap routine. A line
number of 0 disables play trapping.

To Enable or Disable PLAY(n) Trapping

PLAY ON PLAY(n) trapping is enabled

PLAY OFF PLAY(n) trapping is disabled

an error trap occurs
all event trapping is disabled

PLAY STOP PLAY(n) trapping is
suspended, i.e. the GOSUB is
not performed, but it is
performed as soon as a PLAY
ON is executed.

Remarks If PLAY(n) trapping is enabled, and the
background music buffer has gone from ‘n’ to
‘n-1’ notes, then the ON PLAY(n) GOSUB line
is executed, and the corresponding routine
activated. To avoid recursive traps, a PLAY
STOP is automatically executed when the trap
occurs.

7-201

ON PLAY(n) GOSUB
Statement

Example

A RETURN from the trapping subroutine
automatically performs a PLAY(n) ON (unless
an explicit PLAY(n) OFF was performed
within the trap routine). The “RETURN
linenum” form may also be used. Use this
form with care, because any other active
GOSUBs, WHILEs, or FORs will remain
active, and errors (such as “FOR without
NEXT”) may result.

If PLAY(n) trapping is enabled, and the
background music buffer is empty, no
PLAY(n) trapping routine is executed.

Note:

A PLAY event trap is only effective when
playing Background Music (PLAY “MB...”).
PLAY event traps have no effect when
running in Music Foreground (PLAY “MF...”).

A PLAY event trap is ineffective if the Music
Background buffer is already empty when a
PLAY ON is executed.

Care should be taken in selecting values for
“n.” If “n” is a large number, event traps
occur frequently enough to reduce program
execution speed.

10 PLAY ON
20 Ol\l PLAY(8) GOSUB 1000
1000 ‘SUB PLAYC8) TRAP
1050 RETURN

7-202

ON STRIG (n)
Statement

Sets up a line number for BASIC to trap to
when one of the joystick buttons (triggers) is
pressed.

Syntax ON STRIG (n) GOSUB line

n may be 0, 2, 4, or 6, and indicates the button to be trapped
as follows:

0 button Al

2 button Bl

4 button A2

6 button B2

line is the line number of the trapping routine. If line is 0,
trapping of the joystick button is disabled.

Remarks The ON STRIG(n) statement causes a
program to branch to a specified routine when
a specific joystick button is pressed. A
STRIG(n) ON statement must first be executed
in order for an ON STRIG (n) statement to be
active.

The trap routine passes control back in one of
two ways. RETURN branches to the program
line at which the interrupt was detected.
RETURN n branches to line n.

To avoid recursive traps a STRIG(n) STOP is
automatically executed when the trap occurs.

A RETURN from the trap routine
automatically performs a STRIG(n) ON
(unless a STRIG(n) OFF was performed within
the trap routine.) The RETURN line form may
also be used.

7-203

ON STRIG(n)
Statement

Example This is an example of a trapping routine for
the button on the first joystick.

100 ON STRIG(O) GOSUB 2000
110 STRIG(O) ON

2000 REM subroutine for 1st button

2100 RETURN

7-204

ON TIMER (n) GOSUB
Statement

Causes an event trap every ‘n’ seconds.

The ON TIMER (n) GOSUB statement is only
used in a program.

Syntax ON TIMER(n) GOSUB linenum

n is an integer expression in the range 1 through 86400 (1
second through 24 hours). Values outside this range will
result in an “Illegal function call” error.

linenum

Remarks

is the first line number of the TIMER trapping routine.

If event trapping is enabled, and if “line” in
the ON TIMER GOSUB statement is not zero,
GW BASIC checks between statements to see
if the time has been reached. If it has, a
GOSUB is performed to the specified line.

If a TIMER OFF statement has been executed
the GOSUB is not performed and is not
remembered.

If a TIMER STOP statement has been
executed the GOSUB is not performed, but is
performed as soon as a TIMER ON statement
is executed.

When an event trap occurs (i.e., the GOSUB is
performed), an automatic TIMER STOP is
executed so that recursive traps cannot take
place. The RETURN from the trapping
subroutine automatically performs a TIMER
ON statement unless an explicit TIMER OFF
was performed inside the subroutine.

7-205

ON TIMER (n) GOSUB
Statement

The RETURN “linenum” form of the
RETURN statement may be used to return to
a specific line number from the trapping
subroutine. Use this type of return with care,
however, because any other GOSUBs,
WHILES, or FORs that were active at the time
of the trap remain active and errors such as
“FOR without NEXT” may result.

Example

To display the time of day on line 1 every
minute:

10 DIM TIMER (60) GOSUB 1000
20 TIMER ON

1000 OLDROW = CSRLIN 1 save current
row

1010 OLOCOL = POSCO) ‘ save current
column

1020 LOCATE 1,1 . PRINT TIMES
1030 LOCATE OLDROW, OLOCOL‘restore

row and column
1040 RETURN

7-206

OPEN
Statement

Allows I/O to a file or device. OPEN is usually
used in a program.

Syntax 1 OPEN {devicel filespec} [FOR model] AS
[#]filenum [LEN=recl]

Syntax 2 OPEN mode2, [#]filenum, {devicelfilespec}
[,recl]

device is a string expression which specifies the device to be
opened

filespec is a string expression which specifies the file to be opened. It
may optionally include a device.

pathname is a string expression which specifies the file to be opened. It
may optionally include a device.

model is a literal string not enclosed in quotation marks. It
determines the initial file pointer position and the action to
be taken if the file does not exist. The valid modes and
actions taken are:

INPUT Specifies sequential input mode. Positions
the pointer to the beginning of an existing
file. A “File not found” error is given if the file
does not exist.

OUTPUT Specifies sequential output mode. Positions
the pointer to the beginning of the file. If the
file does not exist, one is created.

7-207

OPEN
Statement

APPEND Specifies sequential output after the last record
on the file. Positions the pointer to the end of
the file. If the file does not exist, one is created.

If the FOR ‘model’ clause is omitted, the
initial position is at the beginning of the file.
If the file is not found, one is created. This is
the Random I/O mode. That is, records may
be read or written at any position within the
file.

filenum is an integer expression returning a number in the range 1
through 15. The number is used to associate an I/O buffer
with a disk file or device. This association exists until a
CLOSE or CLOSE ‘filenum’ statement is executed. The file
is referred to by this number in any I/O statement.

record length is an integer expression from 1 to 32767. This value sets the
record length to be used for random files (see the FIELD
statement). If omitted, the ‘record length’ defaults to 128
byte records. The specified ‘record length’ may not be
greater the value specified by the 7S:’ switch on the GW BASIC
command. GW BASIC will ignore this option if it is used to
OPEN a sequential file.

mode2 is a string expression whose first character is one of the
following:

O Specifies sequential output mode
I Specifies sequential input mode
R Specifies random input/output mode

7-208

OPEN
Statement

Remarks A disk file must be opened before any disk I/O
operation can be performed on that file. OPEN
allocates a buffer for I/O to the file or device
and determines the mode of access that will be
used with the buffer. The “filenum” parameter
specifies the number which will be associated
with the file as long as it is open and is used
by other I/O statements to refer to the file or
device.

For each device or file, the following OPEN
modes are allowed:

KYBD:
SCRN:
LPT1:
LPT2:
LPT3:
C0M1:, COM2:,

COM3:, and COM4:
Disk files allow all modes

INPUT only
OUTPUT only
OUTPUT only
OUTPUT only
OUTPUT only
INPUT, OUTPUT or random
only

7-209

OPEN
Statement

The GW BASIC file I/O system allows you to
utilize user installed devices.

Character devices are opened and used in the
same manner as disk files except that
characters are not buffered by GW BASIC as
they are for disk files. The record length is set
to one.

GW BASIC only sends a carriage return as
end of line. If the device requires a LF (line
feed), the driver must provide it. *When
writing device drivers, keep in mind that GW
BASIC users want to read and write control
information. Writing and reading of device
control data is handled by the GW BASIC
IOCTL statement and IOCTL$ function.

Rules

• If you enter a value outside of the
corresponding range, an “Illegal function call”
error is returned, and the file will not be
opened.

• If the file is opened for INPUT, attempts to
write to the file result in a “Bad File Mode”
error. If a file that is opened for input does not
exist, a “File not found” error message is
displayed.

*The exception to this is output sent to a printer (LPT1,
LPT2, or LPT3), where each line ends with a linefeed unless
the printer is opened as a random file and WIDTH is set to
255.

7-210

OPEN
Statement

• When a file is opened for APPEND, the
pointer position is initially at the end of the
file and the record is set to the last record of
the file. PRINT#, or WRITE# then extends the
file.

• If the file is opened for OUTPUT or APPEND,
attempts to read the file result in a “Bad File
Mode” error.

• If you open a file which does not exist for
output, append, or random access, that file is
automatically created.

• A file can be opened for sequential input or
random access on more than one file number
at a time. A file may NOT be opened for
OUTPUT or APPEND on more than one file
number at a time.

Since you can reference the same file in a
subdirectory via different pathnames, it is
impossible for GW BASIC to know that it is
the same file simply by looking at the
pathname. For this reason, GW BASIC does
not let you open the file for OUTPUT or
APPEND if it is on the same disk, even if the
pathname is different.

7-211

OPEN
Statement

Examples 10 OPEN “I”,2,“INVEN”

10 OPEN “MAILING.DAT” FOR APPEND AS 1

If you write and install a device called FOO,
then the OPEN statement can be:

10 OPEN “DEVFOO” FOR OUTPUT AS #1

To open the printer for output, you could use the
line:

100 OPEN “LPT:” FOR OUTPUT AS #1

which uses the GW BASIC device driver. You
can use part of a pathname:

100 OPEN “DEVLPT1 ” FOR OUTPUT AS #1

This statement uses the MS-DOS device
driver.

7-212

OPEN
Statement

Examples Using the following tree structure:

ROOT

If MARY is your current directory, then:

OPEN “REPORT”...
OPEN “\SALES\MARY\REPORT”...
OPEN “..\MARY\REPORT”...
OPEN “..\..\MARY\REPORT”...

all refer to the same file.

7-213

OPEN
Statement

Possible Errors

“Bad File name”

“Bad File number”

“Bad File mode”

“Too many files” — Too many files are open.
(See the 7F:’ switch in the GWBASIC
command line).

“File not found” — If a file opened for input
does not exist, a “File not found” error occurs.

“Device not available” — You have attempted
to open either a Directory, or a non-existent
device.

“File already open”

“Device I/O error” — Reception error. Usually
caused by an incorrectly written device driver
(user-installed).

“Illegal function call” — Usually caused by an
excessive record length. (See the 7S:’ switch in
the GWBASIC command line).

7-214

OPEN COM
Statement

Opens a communications file.

Syntax OPEN “COMn:[speed][,parity]],data][,stop]
[,RS][,CS[n]][,DS[n]][,CD[n]][,BIN][,ASC]
[,LF]”AS [#]filenum [LEN=m]

n is 1, 2, 3, or 4. It specifies the number of the Asynchronous
Communication Adapter.

speed is an integer constant which sets the transmit/receive baud
rate fom the following speeds: 75, 110, 150, 300, 600, 1200,
1800, 2400, 4800, and 9600. The default is 300 bps.

parity designates the parity of the device to be opened:

O ODD M MARK(l)
E EVEN (default) S SPACE (0)
N NONE

data designates the number of data bits.
Valid entries are: 5, 6, 7, or 8. Default is 7.

stop designates the number stop bits. Valid entries are: 1, 1.5, or
2. Default is 2 for speed 75 bps and 110 bps, 1 for all other
speeds.

RS suppresses RTS (Request To Send)

CS[n] controls CTS (Clear To Send)

DS[n] controls DSR (Date Set Ready)

CD[n] controls CD (Carrier Detect)

7-215

OPEN COM
Statement

BIN opens the device in binary mode. BIN is selected by default,
unless ASC is specified. See “Remarks” for further discus
sion of BIN.

ASC opens the file in ASCII mode. See “Remarks” for further
discussion of ASC.

LF specifies that a linefeed is to be sent after a carriage return
(see Remarks).

filenum is an integer expression returning a valid file number which
is associated with the file while it is OPEN.

m is the maximum number of bytes that can be read from or
written to the communications buffer with GET or PUT. The
default is 128.

Remarks The OPEN COM statement must be executed
before a device can be used for RS232
communications.

A COM device may be OPENed to only one
file number at a time.

Any syntax errors in the OPEN COM
statement will result in a “Bad File name”
error. An indication as to which parameter is
in error is not given.

A “Device Timeout” error occurs if Data Set
Ready (DSR) is not detected.

The “speed,” “parity,” “data,” and “stop”
options must be listed in the order shown in
the above syntax. The remaining options may
be listed in any order, but you must list them
after the “speed,” “parity,” “data,” and “stop”
options.

7-216

OPEN COM
Statement

Example

LF allows communication files to be printed
on a serial line printer. When LF is specified, a
linefeed character (OAH) is automatically sent
after each carriage return character (ODH).
This includes the carriage return sent as a
result of the width setting. INPUT# and LINE
INPUT#, when used to read from a COM file
that was opened with the LF option, stop
when they see a carriage return. The linefeed
is always ignored.

The LF option is superceded by the BIN
option.

In the BIN mode, tabs are not expanded to
spaces, a carriage return is not forced at the
end-of-line, and CTRL Z is not treated as end-
of-file. When the channel is closed, CTRL Z is
sent over the RS232 line. The BIN option
supercedes the LF option.

In ASC mode, tabs are expanded, carriage
returns are forced at the end-of-line, CTRL Z
is treated as end-of-file, and XON/XOFF
protocol (if supported) is enabled. When the
channel is closed, CTRL Z will be sent over the
RS232 line.

10 OPEN “C0M1:9600,N,8,1 ,BIN” AS #2

will open communications channel 1 at a
speed of 9600 baud with no parity bit, 8 data
bits, and one stop bit. Input/Output will be in
the binary mode. Other lines in the program
may now access channel 1 as file number 2.

7-217

OPTION BASE
Statement

Syntax

n

Remarks

Defines the minimum value for array
subscripts.

OPTION BASE n

is an integer expression and may be 1 or 0

The default base is 0. If the statement:

OPTION BASE 1

is executed, the lowest value an array
subscript may have is 1.

A CHAINed program may have an OPTION
BASE statement if no arrays are passed.
Otherwise, the CHAINed program will inherit
the OPTION BASE value of the chaining
program.

Possible Errors

The OPTION BASE statement must be coded
before definition or usage of arrays. A
“Duplicate Definition” error occurs when the
base value is changed when arrays are in
existence.

7-218

OUT
Statement

Transmits a byte to an output port.

Syntax OUT port, byte

port is an integer expression in the range 0 through 65535 and
represents a port number

byte is an integer expression in the range 0 through 255 and
represents the data to be transmitted

Remarks OUT is the complimentary statement to the
INP statement.

If “port” or “byte” is outside the specified
range, an “Illegal function call” error is
returned.

Example 100 OUT 1234,255

7-219

PAINT
Statement

Paints an enclosed area on the screen with a
specified color (Graphics Mode only).

Syntax PAINT [STEP] (x,y)[,[paint][,[boundary]
[’background]]

x,y are the coordinates, either absolute or relative, of a point
where painting is to begin. Painting should always start on
a non-border point.

paint is a numeric or string expression. If it is a numeric expression
in the range 0 to 3, it represents the color number to be used
for painting (see the COLOR graphics statement for the
current screen mode, for details). If it is a string expression
then ‘tiling’ is performed. Tiling is described in detail later
in this section.

border is an integer expression in the range 0 to 3. It identifies the
border color of the figure to be filled.

background is a string expression returning one character, used in
“paint tiling”.

Remarks The PAINT statement will fill in an arbitrary
figure, with edges of border color with the
specified paint color. The paint color will
default to the graphics foreground color if not
given, and the border color defaults to the
paint color.

7-220

PAINT
Statement

For example, in medium resolution you can fill
in a circle of color 1 with color 2. Visually, this
could mean a red ball with a green border (if
palette 0 were selected).

Since there are only two colors in high-
resolution and super-resolution mode, this
means “whiting out” an area until white is
encountered, or “blacking out” an area until
black is encountered.

PAINT must start on a non-border point,
otherwise PAINT will have no effect.

If the specified point already has the color
“boundary,” the PAINT will have no effect.

PAINT can fill any figure, but PAINTing
“uneven” edges on very complex figures may
result in an “Out of Memory” error. If this
happens, you must use the CLEAR statement
to increase the amount of stack space
available.

Tiling

A figure may be “tiled” using the paint
parameter as a string expression of the form:

CHR$(&Hnn)+CHR$(&nn)+CHR$(&Hnn)...

where the two hexadecimal numbers (&Hnn)
correspond to 8 bits. The tile mask is always 8
bits wide and the string expression may be
from 1 to 64 bytes long.

7-221

PAINT
Statement

The structure of the string expression appears
as follows:

0,0

0,2

x
x
X

X
X
X

Tile byte 0
Tile byte 1
Tile byte 2

x
x
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

x increases-*
bit of tile byte

0,63 |x|x|x|x|x|x|x|x Tile byte 63 (maximum allowed)

The tile pattern is replicated uniformly over
the entire screen.

Each byte in the tile string masks 8 bits along
the x axis when plotting points. Each byte of
the tile string is rotated as required to align
the y axis such that:

tile—byte mask= y MOD tile__length

Since there is only one bit per pixel in high
and super resolution modes (SCREEN 2 and
3), a point is plotted at every position in the bit
mask which has a value of 1.

7-222

PAINT
Statement

In high and super-resolution mode, the screen
can be painted with ‘x’s by the following
statement:

Syntax PAINT (320,100),CHR$(&H81)+
CHR$(&H42)+CHR$(&H24)+CHR$(&H18)+
CHR$(&H18)+CHR$(&H24)+CHR$(&H42)+

CHR$(&H81)

This pattern appears on the screen as:

x increases —

CHR$ (&H81) Tile byte 0
CHR$ (&H42) Tile bytel
CHR$ (&H24) Tile byte 2
CHR$ (&H18) Tile byte 3
CHR$ (&H18) Tile byte 4
CHR$ (&H24) Tile byte 5
CHR$ (&H42) Tile byte 6
CHR$ (&H81) Tile byte 7

Since there are 2 bits per pixel in medium
resolution mode (SCREEN 1), each byte of the
tile pattern only describes 4 pixels. In this
case, every 2 bits of the tile byte describes 1 of
the 4 possible colors associated with each of
the 4 pixels to be put down.

If “background” color is omitted, the default
value is CHR$(0). When supplied,
“background” specifies the “background tile”
pattern or color byte to skip when checking for
boundary termination.

7-223

PAINT
Statement

It may occasionally be necessary to tile paint
over an area that is the same color as two
consecutive lines in the tile pattern. Normally,
paint quits when it encounters two consecutive
lines of the same color as the point being set
(the point is surrounded). It would not be
possible to draw alternating blue and red lines
on a red background without this parameter.

Paint would stop as soon as the first red pixel
was drawn. Specifying red [CHR$(&HAA)] as
the background color, allows the red line to be
drawn over the red background.

You cannot specify more than two consecutive
bytes in the tile string that match the
background color. Specifying more than two
will result in an “Illegal function call” error.

7-224

PAINT
Statement

Example 10 SCREEN 1
20 COLOR 0,0,1,0
30 CLS
40 CIRCLE (256,1281,130,2
50 PAINT (256,1281,1,2
60 LINE (251,1231-STEP(10,1 Ol.O.BF

Statement 10 selects Medium Resolution Mode.
Statement 20 selects black for color number 0,
palette 0 (green, red, yellow), green as graphics
foreground, black as graphics background.
Statement 30 clears the screen with the
background color (in this case black).
Statement 40 draws a red circumference with a
radius of 130 whose center is (256,128).
Statement 50 paints the circle green.
Statement 60 draws a black filled in box in the
middle of the circle.

7-225

PEEK
Function

Returns the byte read from the specified
memory location.

Syntax PEEK (offset)

offset is a numeric expression returning an integer in the range 0
to 65535. It indicates the address of the memory location
from which a byte will be returned. It is the offset from the
current segment, which was defined by the last DEF SEG
statement.

Remarks The returned value is an integer in the range 0
to 255.

If “offset” is outside the specified range, an
“Illegal function call” error is returned.

PEEK is the complementary function of the
POKE statement.

Example A=PEEK(&H5A00)

7-226

PLAY
Statement

Plays music in accordance with a string which
specifies the notes to be played, and the way in
which the notes are to be played.

Syntax PLAY stringexp

stringexp is a string expression containing a series of single-character
commands

Remarks PLAY uses a concept similar to that in DRAW
(see the DRAW statement in this chapter) by
embedding a Music Macro Language into one
statement. A set of subcommands, used as
part of the PLAY statement, specifies the
particular action to be taken.

The single-character commands available for
the PLAY string are as follows:

A._Gr Plays the specified note in the current octave. The optional
suffixes (#) or (+) produce a sharp note: suffix (-) produces a
flat note. Sharp and flat notes that do not correspond to a
black key on a piano are not allowed.

On Sets the octave number, from 0 to 6.

Increments the octave and plays note n. The octave is
progressively incremented, each time note n is played, until
octave 6 is reached. Note n is subsequently played at octave
6.

7-227

PLAY
Statement

Nn

Pn

Ln

Decrements the octave and plays note n. The octave is
progressively decremented, each time note n is played, until
octave 0 is reached. Note n is subsequently played at octave

Plays one of 84 notes within the 7 possible octaves. The Nn
parameter ranges from 0 to 84; 0 indicates a rest. This
command is an alternative to specifying notes using the
note name (A-G) and octave number commands.

Specifies a pause. The n parameter ranges from 1 to 64 and
corresponds to the length of each note, set by Ln.

Sets the length of each note. The n parameter ranges from 1
to 64, where n=l is equivalent to a whole note; n=4 is
equivalent to a quarter note, etc. The length may also follow
the note when a change of length only is required for a
particular note. In this case, A16 is equivalent to L16A.

A dot or period after a note causes it to be played at 1 y2 times
the specified length. Multiple periods may appear after a
note, and the length is adjusted accordingly; e.g., A. is 3/2,
A., is 9/4, etc. Periods may appear after a pause, and the
pause length is adjusted accordingly.

7-228

PLAY
Statement

Tn Sets the “tempo”, or number of quarter notes, in one minute.
The n parameter ranges from 32 to 255, with a default value
of 120.

MF Sets Music Foreground. Music (PLAY statement) and
SOUND are to run in Foreground. Each successive note does
not start until the preceding note has finished. Music
foreground is the default setting.

MB Sets Music Background. Music (PLAY statement) and
SOUND are to run in Background. The GW BASIC program
continues as music plays in the “background . Up to 32
notes (or rests) can be played in the background at a time.

MN Sets “music normal”, so that each note will play 7/8 of the
time determined by length (L).

ML Sets “music legato”, so that each note will play the full
period set by length (L).

MS Sets “music staccato”, so that each note will play 3/4 of the
time set by length (L).

X variable Executes the specified variable string.

7-229

PLAY
Statement

Remarks

Example

The “n” parameter may be constant or
variable, where a variable is written as:
+variable;.” The semicolon is necessary when

a variable is used in this way, or when the X
command is used, but it is not allowed after
MF, MB, MN, ML, or MS. In all other cases, a
semicolon is optional between commands.

When the X command is used, “VARPTR$
(variable)” may be substituted for “variable;”
as in the example below.

100 PLAY “02 L4 C P1 C P2 C P4’

200 PLAY “XBS;XCS;XDS;’

300 PLAY “XM$;5
or
300 PLAY “X”+VARPTR$(M$J

7-230

PLAY(n)
Function

Returns the number of notes remaining in the
music background buffer.

Syntax PLAY (dummy)

dummy is a dummy argument. Any value may be supplied.

Remarks If the program is running in Music
Foreground mode, PLAY(n) returns 0.

If the program is running in Music
Background mode, PLAY(n) returns the
number of notes currently in the Music
Background buffer. The maximum value that
PLAY(n) may return is 32.

Example IF PLAY(O) = 6 GOTO 500

7-231

PLAY
ON|OFF|STOP

Statements

PLAY ON enables PLAY(n) trapping.
PLAY OFF disables PLAY(n) trapping.
PLAY STOP suspends PLAY(n) trapping.

Syntax PLAY {ON I OFF I STOP}

Remarks PLAY ON, PLAY OFF, PLAY STOP are used
in conjunction with the ON PLAY(n)
statement.

If a PLAY OFF statement has been executed
the GOSUB is not performed and is not
remembered.

If a PLAY STOP statement has been executed
the GOSUB is not performed, but will be
performed as soon as a PLAY ON statement is
executed.

When an event trap occurs (i.e., the GOSUB is
performed), an automatic PLAY STOP is
executed so that recursive traps cannot take
place. The RETURN from the trapping
subroutine will automatically perform a PLAY
ON statement unless an explicit PLAY OFF
was performed inside the subroutine.

The RETURN “linenum” form of the
RETURN statement may be used to return to
a specific line number from the trapping
subroutine. Use this type of return with care;
however, because any other GOSUBs,
WHILES, or FORs that were active at the time
of the trap will remain active, and errors such
as “FOR without NEXT” may result.

7-232

PMAP
Function

Converts physical coordinates to world
coordinates or vice versa. (Graphics Mode
only).

Syntax PMAP (coordinate,n)

coordinate is a numeric expression specifying the x or y co- ordinate of
the point to be mapped.

n is an integer in the range 0 to 3:
0 maps the world coordinate x to the physical coordinate x
1 maps the world coordinate y to the physical coordinate y
2 maps the physical coordinate x to the world coordinate x
3 maps the physical coordinate y to the world coordinate y

Remarks The four PMAP functions allow you to find
equivalent point locations between the world
coordinates created with the WINDOW
statement and the physical coordinate system
of the screen or viewport as defined by the
VIEW statement.

Examples Given a defined WINDOW SCREEN (80,100) -
(200.200) the upper left coordinate of the
window is (80,100) and the lower right is
(200.200) . The screen coordinates are (0,0) in
the upper left hand corner and (639,199) in the
lower right. Then:

7-233

PMAP
Function

X = PMAP(80,0)

returns the screen x coordinate of the window
x coordinate 80: 0

Y = PMAP(200,1)

returns the screen y coordinate of the window
y coordinate 200: 199

X = PMAPI619.2)

returns the “world” x coordinate that
corresponds to the screen or viewport x
coordinate 619: 199

The PMAP function in the statement:

Y = PMAP(100,3)

returns the “world” y coordinate that
corresponds to the screen or viewport y
coordinate 100: 140

7-234

POINT
Function

With two arguments (x,y) returns the color _
number of a pixel on the screen. If one
argument (n) is given, returns current
graphics coordinate. (Graphics Mode only).

Syntax POINT (n)

x,y are the absolute coordinates of the pixel to be referenced. If
the point is out of range, the value -1 is returned.

n ’n’ may have the values 0, 1, 2, or 3:
0: Returns the current physical x coordinate
1: Returns the current physical y coordinate
2: Returns the current world x coordinate if a WINDOW
statement has been used, other-wise returns the same value
as the POINT(O) function.
3: Returns the current world y coordinate if WINDOW is
active, otherwise returns the same value as the POINT(l)
function.

Remarks

vl+POINT (x,y)

returns the color number of the specified pixel
into the integer variable vl.

7-235

POINT
Function

v2+POINT (n)

returns the specified coordinate of the current
point into the single (or double) precision
variable v2.

Examples

10 SCREEN 0.0
20 FOR K=0 TO 3
30 PSET (10,10),K
40 IF P0INT(10,10)OK

THEN PRINT “Broken Basic!’
50 NEXT

10 SCREEN 2
20 IF POINTU,DOO

THEN PRESET (I,I) ELSE PSET (I,I)
30 ‘Invert current state of point(l.l)
40 PSET D,D,1-P0INTCI,D
50 ‘Another way to invert a point, if the
55 system is B/W

10 SCREEN 1
20 LET C=3
30 PSET (10,10),C
40 IF POINTC10,10)=C

THEN PRINT “This point is color “;C

7-236

POKE
Statement

Writes a byte into a memory location.

Syntax POKE offset,byte

offset is a numeric expression returning an integer in the range 0
to 65535 and indicates the address of the memory location
where the data is to be written. It is the offset from the
current segment, which was set by the last DEF SEG
statement.

byte is the data byte. It must be in the range 0 to 255.

Remarks POKE can pass arguments to assembly
language routines.

If either offset or byte is outside the specified
range, an “Illegal function call” error is
returned.

PEEK is the complementary function to
POKE.

Example 10 POKE &H5A00,&HFF

Warning Use POKE carefully. If it is used incorrectly, it
can cause GW BASIC or MS-DOS to crash.

7-237

POS
Function

Returns the current horizontal (column)
position of the cursor.

Syntax POS (dummy)

dummy is a dummy argument. Any value is accepted.

Remarks The current horizontal (column) position of the
cursor is returned. The leftmost position is 1.
The rightmost position may be 40 or 80,
depending on the current screen width. See
CSRLIN and LPOS Functions.

Example IF POS(0)>50 THEN BEEP

7-238

PRESET
Statement

Draws a point at the specified position on the
screen (Graphics Mode only).

Syntax PRESET[STEP]((x,y)[, color]

x,y If the STEP option is not included, x,y are absolute
coordinates of the point to be drawn. If the STEP option is
included, x,y are the relative coordinates of the point to be
drawn.

color is the color number to be used, in the range 0 to 3. (See the
COLOR graphics statement for the current screen mode, for
details). If no ‘color’ parameter is given, the graphics
background color is selected.

Remarks If the color is given, PRESET is identical to
PSET. If an out of range coordinate is given,
no action is taken and no error message is
given. If a color greater than 3 results in an
“Illegal function call”.

Examples PRESET (x,y)

is identical to:

PSET (x,y),0

assuming that the graphics background color
is O(Black). See the COLOR graphics
statement for the current mode.

7-239

PRINT
Statement

Outputs data to the screen.

Syntax PRINT [list-of-expressions{,l;}]

list of expressions
the expressions in the list may be numeric and/or string
expressions. (String constants must be enclosed in quotation
marks.) Each expression should be separated from the next
by a comma, blank, or semicolon.

Remarks If you include the “list-of-expressions”, they
are displayed on the screen. If you omit the
“list-of-expressions”, a blank line is dis
played. A question mark may be used in place
of the word PRINT in a PRINT statement.

The position of each printed item is
determined by the punctuation used to
separate the items in the list. GW BASIC
divides the line into print zones of 14 spaces
each. In the list of expressions, a comma
causes the next value to be printed at the
beginning of the next zone. A semicolon
causes the next value to be printed
immediately after the last value. One or more
spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list
of expressions, the next PRINT or PRINT
USING stagement begins printing on the
same line spacing accordingly. If the list of
expressions terminates without a comma or a
semicolon, a carriage return is

7-240

PRINT
Statement

Examples

printed at the end of the line. If the printed
line is longer than the terminal width, GW
BASIC goes to the next physical line and
continues printing.

Printed numbers are always followed by a
space. Positive numbers are preceded by a
space. Negative numbers are preceded by a
minus sign. Single precision numbers that can
be represented with 7 or fewer digits in the
unsealed format, are output using the unsealed
format. For example 10”5 * 7 * * 10 is output as .0000001
and 10-8 is output as IE-08.
Double precision numbers that can be
represented with 16 or fewer digits in the
unsealed format are output using the unsealed
format. For example, ID-15 is output as
.0000000000000001 and ID-16 is output as
ID-16.

5 REM PRINT WITH COMMAS
10 X=5
20 PRINT X+5,X-5,X*(-5),X °/o5
30 END
RUN
10 0 -25 3125
Ok

7-241

PRINT
Statement

5 REM WITH SEMICOLON AT 20
10 INPUT X
20 PRINT X “SQUARED IS” X "2 “AND”;
30 PRINT X “CUBED IS” X *3
40 PRINT‘BLANK LINE
RUN
? 9

9 SQUARED IS 81 AND 9 CUBED IS 729
Ok

5 REM NUMBERS WITH SEMICOLONS
10 FOR X=1 TO 5
20 J=J+5
30 K=K+10
40 ?J;K;
50 NEXT X
RUN

5 10 10 20 15 30 20 40 25 50
Ok

7-242

PRINT USING
Statement

Outputs data to the screen using a specified
format.

Syntax PRINT USING format string;
list of expressions?,!;}

format string is a string expression composed of special formatting char
acters. These formatting characters (see below) determine
the field and the format of the printed strings or numbers.

list of is comprised of the string expressions or numeric expressions
expressions that are to be printed, separated by semicolons, or commas.

String constants must be enclosed in quotation marks. If a
comma or a semicolon terminates the list of expressions, the
next PRINT or PRINT USING statement begins printing
on the same line, spacing accordingly.

When PRINT USING is used to print strings,
one of three formatting characters may be
used to format the string field:

! Specifies that only the first character in the
given string is to be printed.

7-243

PRINT USING
Statement

Specifies a number of characters to be printed.
If two backslashes are typed with no spaces,
two characters will be printed; with one space,
three characters will be printed, and so on. If
the string is longer than the field, the extra
characters are ignored.

If the field is longer than the string, the string
will be left-justified in the field and padded
with spaces on the right. For example:

10 A$=“LOOK”:B$=“OUT”
30 PRINT USING “!”;A$;B$
40 PRINT USING “\ \”;A$;B$
50 PRINT USING “\ \”;A$;B$;“!!”
RUN
LO
LOOKOUT
LOOK OUT!!

Specifies a variable length string field. When
the field is specified with the string is
output without modification. For example:

10 A$=“LOOK”:B$=“OUT”
20 PRINT USING “!’;A$;
30 PRINT USING “G’;B$
RUN
LOUT

7-244

PRINT USING
Statement

When PRINT USING is used to print
numbers, the formatting special characters
may be used to format the numeric field:

Represents each digit position. Digit positions
are always filled. If the number to be printed
has fewer digits than positions specified, the
number will be right-justified (preceded by
spaces) in the field.

A decimal point can be inserted at any
position in the field. If the format string
specifies that a digit is to precede the decimal
point, the digit will always be printed (as 0, if
necessary). Numbers are rounded as
necessary. For Example:

PRINT USING “##.##”;.78
0.78
PRINT USING “###.##”;987.654
987.65
PRINT USING 0.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

A plus sign at the beginning or end of the
format string will cause the sign of the
number (plus or minus) to be printed before or
after the number.

7-245

PRINT USING
Statement

**

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign. For Example:

PRINT USING “+##.## “;-68.95,2.4,55.6,- .3
-68.55+2.40+55.60-0.90
PRINT USING “##.##-“;-68.95,22.449,-7.01
68.95-22.45 7.01-

A double asterisk at the beginning of the
format string causes leading spaces in the
numeric field to be filled with asterisks. The **
also specifies positions for two more digits. For
Example:

print using 2.39,-0.9,765.1
-"-12.4-::--0.9765.1

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the
minus sign trails to the right. For Example:

PRINT USING “$$###.##”;456.78
$456.78

7-246

PRINT USING
Statement

**$ The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the dollar sign. For Example:

PRINT USING uw-::-$##.##”;2.34
-:hh:-$2.34

A comma that is to the left of the decimal
point in a formatting string causes a comma
to be printed to the left of every third digit to
the left of the decimal point. A comma that is
at the end of the format string is printed as
part of the string. A comma specifies the digit
position for itself. The comma has no effect if
used with the exponential (""" ~) format. For
Example:

PRINT USING “####,,##”;1234.5
1,234.50
PRINT USING “####.##,”;1 234.5
1234.50,

Four carets (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carets allow
space for E+xx or D+xx to be printed. Any
decimal point position may be specified. The
significant digits are left-justified, and the
exponent is adjusted. Unless a leading + or
trailing + or - is specified, one digit position
will be used to the left of the decimal point to
print a space or a minus sign. For Example:

7-247

PRINT USING
Statement

PRINT USING “##.## ”;234.56
2.35E+02
PRINT USING “.####-- - ”;888888
.8889E+06
PRINT USING “+.## ”;123
+.12E+03

An underscore in the format string causes the
next character to be output as a literal
character. For Example:

PRINT USING "_! ##.## _!”;1 2.34
112.34!

The literal character itself may be an
underscore by placing “ ” in the format
string.

If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a
percent sign will be printed in front of the
rounded number. For Example:

PRINT USING “##.##”;111.22
0/0111.22
PRINT USING 999
°/o1.00

If the number of digits specified exceeds 24, an
“Illegal function call” error will result.

7-248

PRINT# and PRINT# USING
Statements

Write data sequentially to a disk file. PRINT#
and PRINT# USING are usually used in a
program.

Syntax PRINT# filenum, [USING format-string
;] list-of-expressions

filenum is the number used when the file was OPENed for
OUTPUT

format-string is a string expression (usually a constant or variable)
composed of formatting characters described in the “PRINT
USING” statement

list-of-expressions
is a list of the numeric and/or string expressions to be
written to file

PRINT# does not compress data on the disk.
An image of the data is written to the disk,
just as it would be displayed on the terminal
screen with a PRINT statement. Be sure to
delimit the data so that it can be input
correctly.

Numeric expressions should be delimited by
semicolons.

Example 50 PRII\IT#1 ,B;C;D;X;Y;Z

If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to the disk.

7-249

PRINT# and PRINT# USING
Statements

Example

Example

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

Let A$=“CAMERA” and B$=‘93604-l’.
The statement:

100 PRII\IT#1,A$;B$

writes CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. Insert explicit
delimiters into the PRINT# statement as
follows:

200 PRII\IT#1 ,A$;“,”;B$

The image written to disk is

CAMERA,93604-1

If the strings themselves contain commas,
semicolons, significant leading blanks,
carriage returns, or line feeds, write them to
disk surrounded by explicit quotation marks,
CHR$(34).

100 AS = “CAMERA, AUTOMATIC”
200 B$ = “93604-1”
300 PRII\IT#1,AS;B$

Writes the following image to disk:

CAMERA, AUTOMATIC 93604-1

7-250

$PRINT# and PRINT# USING
Statements

The statement

400 ll\IPUT#1,A$,B$

Inputs “CAMERA” to A$ and “AUTOMATIC
93604-1” to B$. To separate these strings
properly on the disk, write double quotation
marks to the disk image using CHR$(34). The
statement:

500 PRII\IT#1,CHR$(34);A$;CHR$(34);
CHR$(34);B$;CHRS(34)

writes:

“CAMERA, AUTOMATIC’”’ 93604-1”

And the statement:

600 ll\IPUT#1,A$,B$

Inputs “CAMERA, AUTOMATIC” to A$ and
“ 93604-1” to B$.

The PRINT# statement may also be used with
the USING option to control the format of the
disk file:

700 PRII\1T#1,USII\IG”$$###.##,”;J;K;L

See Chapter 4 (Disk File Handling) and
“WRITE#” in this chapter.

7-251

PSET
Statement

Syntax

x,y

color

Remarks

Examples:

Illuminates a pixel at a specified position on
the screen. (Graphics Mode only).

PSET [STEP] (x,y) [,color]

If the STEP option is not included, x,y are absolute
coordinates of the point to be drawn. If the STEP option is
included, x,y are the relative coordinates of the point to be
drawn.

is the color number to be used, in the range 0 to 3. (See the
COLOR graphics statement for the current screen mode, for
details). If no “color” parameter is given, the graphics
foreground color is selected.

PSET differs from PRESET in the default if
no color is specified. PSET defaults to the
foreground color. PRESET defaults to the
background color.

See PRESET.

5 REM DIAGONAL LINE
10 FOR i=0 TO 100
20 PSET (i.i)
30 NEXT

10 REM CLEARS OUT LINE BY SETTING
EACH PIXEL TO 0:
40 FOR i=100 TO 0 STEP -1
50 PSET (i,i),0
60 NEXT

7-252

PUT (COM files)
Statement

Writes a specified number of bytes to a
communications file.

Syntax PUT [#] filenum [, length]

filenum is an integer expression returning a valid file number

length is an integer expression returning the number of bytes to be
transferred out of the communications buffer, ‘length’
cannot exceed the value set by the /S: switch when GW
BASIC was invoked or the value optionally set in the OPEN
statement.

Example 100 PUT #2, 80

Remarks This is ordinarily used only in a program, not
in direct mode.

7-253

PUT (Files)
Statement

Writes a record from a random buffer to a
random file.

Syntax PUT [#]filenum [, recordnum]

filenum is the number under which the file was OPENed

recordnum specifies the number of the record in the file. It must be in
the range 1 to 16,777,215. If omitted the current record
number is assumed (i.e., the record whose number is one
higher than that of the last record accessed).

Remarks PUT (FILES) is usually used in a program,
not in direct mode. PRINT#, PRINT# USING,
WRITE#, LSET and RSET may be used to put
characters in the random file buffer before
executing a PUT statement.

In the case of WRITE#, GW BASIC pads the
buffer with spaces up to the carriage return.

Possible
Errors

Any attempt to read or write past the end of
the buffer causes a “Field overflow” error.

7-254

PUT (Files)
Statement

Example

10 OPEN “R”,1 ,“A:RAND”,48
20 FIELD 1,20 AS R1$,20 AS R2$,8 AS R3$
30 FOR L=1 TO 2
40 INPUT “name”;N$
50 INPUT “add ress’ ’;M$
60 INPUT “phone”;P#
70 LSET R1$=N$
80 LSET R2$=M$
90 LSET R3$=MKS$(P#)
100 PUT1,L
110 NEXT L
120 CL0SG1
130 END
RUN
name? Super man
address? usa
phone?11234621
name? robin hood
address? England
phone? 23462101
Ok

Statement 10 opens the random file RAND,
with a record length of 48 on the diskette drive
in A. The file number is 1. Statement 20
divides the buffer into fields.

Statement 100 writes a record to file RAND,
with the record number being set by the
control variable of the FOR/NEXT loop.

7-255

PUT (Graphics)
Statement

Transfers the graphics image stored in an
array to the screen.

Syntax PUT (x ,y), array [, action_verb]

x,y represent the top left corner of the rectangle to be displayed

array is the name of an array containing the image to be displayed.
The type of the array must be numeric.

action_verb is one of: PSET, PRESET, AND, OR, XOR. The default
‘action verb’ is XOR.

Remarks The PUT and GET statements are used to
transfer graphics images to and from the
screen. PUT and GET make possible
animation and high-speed object motion in
graphics mode.

The array is used simply as a place to hold the
image and can be of any type except string. It
must be given dimensions large enough to
hold the entire image.

The PUT statement transfers the image stored
in the array onto the screen. The specified
point is the coordinate of the top left corner of
the image.

7-256

PUT (Graphics)
Statement

The Action Verb Parameter
The “actionverb” specifies the interaction
between the stored image and the one already
on the screen.

PSET transfers the data point by point onto
the screen. Each point has the exact color
taken from the screen with a GET.

PRESET is the same as PSET except that a
negative image is produced.

AND transfers the data over an existing
image on the screen. The resulting image is
the product of the logical AND expression.
Points that had the same color in both the
existing image and the PUT image will
remain the same color, points that do not have
the same color in both images will be changed.

OR superimposes the image onto an existing
image.

XOR causes the points on the screen to be
INVERTED where a point exists in the array
image. This behavior is exactly like that of the
cursor. When an image is PUT against a
complex background TWICE, the background
is restored unchanged. This allows you to
move an object around the screen without
erasing the background.

7-257

PUT (Graphics)
Statement

In medium resolution AND, OR and XOR
have the following effects on color:

a
r
r
a
y

V
a
1
u
e

screen
AND

0 12 3

0

1

2

3

0 0 0 0

0 10 1

0 0 2 2

0 12 3

OR
screen
0 12 3

0

1

2

3

0 12 3

113 3

2 3 2 3

3 3 3 3

screen
XOR

0 12 3

0

1

2

3

0 12 3

10 3 2

2 3 0 1

3 2 10

Animation

Animation proceeds as follows:

• PUT the object(s) on the screen (with the XOR
option)

• Recalculate the new position of the object(s)

• PUT the object(s) on the screen (with the XOR
option) a second time at the old location(s) to
remove the old image(s)

• Go to step 1 for the new location.

7-258

PUT (Graphics)
Statement

Movement done this way will leave the
background unchanged. Minimize the time
between steps 4 and 1, and make sure that
there is enough time delay between 1 and 3 to
eliminate flickering images. If more than one
object is being animated, every object should
be processed at once, one step at a time.

PSET can perform faster animations, but will
not preserve the background. This method
must use an image large or larger than the
maximum distance the object will move. Thus,
when an object is moved, this border will
effectively erase any points left by the
previous PUT. This may be faster than the
method using XOR described above, since only
one PUT is required to move an object
(although you must PUT a larger image).

Possible An “Illegal function call” error occurs if the
Errors image is too large to fit on the screen.

7-259

RANDOMIZE
Statement

Syntax

numexp

Remarks

Reseeds the random number generator.

RANDOMIZE [numexp]

is any numeric expression. The value of the expression will
be used to seed the random numbers.

If “numexp” is omitted, GW BASIC suspends
program execution and asks for a value by
displaying:

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

To get a new random seed without prompting
the user, use the numeric TIMER function. For
example:

RANDOMIZE TIMER

If the random number generator is not
reseeded, the RND function returns the same
sequence of random numbers each time the
program is RUN. To change the sequence of
random numbers every time the program is
RUN, place a RANDOMIZE statement at the
beginning of the program and change the
argument with each RUN.

7-260

RANDOMIZE
Statement

Example

10 RANDOMIZE
20 FOR 1=1 TO 3
30 PRINT RND;
40 NEXT I
Ok
RUN
Random Number Seed(-32768to32767)?3
.2226007 .3343962 .7341223
Ok
RUN
Random Number Seed (-32768 to 32767)74
.9468615 .5775203 .6716166
Ok
RUN
Random Number Seed (-32768to 32767)73
.2226007 .3343962 .7341223

7-261

READ
Statement

Syntax

variable

Remarks

Reads values from one or more DATA
statements and assigns them to variables.

READ variable [, variable]...

each variable in the list may be a numeric or string variable.
The type of the variable must agree with the type of the
associated value in the DATA sequence.

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA
statement values on a one-to-one basis. If the
data type (numeric or string) of an entry in the
data sequence does not correspond to the type
of the associated variable, a “Syntax error”
will result. However any numeric data type
(integer, single or double precision) may be
assigned to any numeric variable.

A single READ statement may access one or
more DATA statements (they will be accessed
in order), or several READ statements may
access the same DATA statement. If the
number of variables in the list of variables
exceeds the number of elements in the DATA
statement(s), an “Out of data” error message
is printed. If the number of variables specified
is fewer than the number of elements in the
DATA statement(s), subsequent READ
statements will begin reading data at the first
unread element. If there are no subsequent
READ statements, the extra data is ignored.

7-262

READ
Statement

To reread DATA statements from the start,
use the RESTORE statement (see
“RESTORE” later in this chapter).

Example 1 80 FOR 1=1 TO 10
90 READ All)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values
from the DATA statements into the array A.
After execution, the value of A(l) will be 3.08,
and so on.

Example 2 10 PRINT “CITY”, “STATE”, “ ZIP”
20 READ CS,S$,Z
30 DATA “DENVER,”, COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data
from the DATA statement in line 30.

7-263

REM
Statement

Allows explanatory remarks to be inserted in a
program.

Syntax REM remark

remark represents a sequence of characters

Remarks REM statements are not executed but are
output exactly as entered when the program is
listed.

REM statements may be branched into from a
GOTO or GOSUB statement. Execution will
continue with the first executable statement
after the REM statement.

Remarks may be added to the end of a line by
preceding the remark with a single quotation
mark (’) instead of REM. The single quotation
mark may also be entered just after the line
number, like REM.

Note
Do not use remarks in a DATA statement,
because they would be considered legal data.

7-264

REM
Statement

Example 120 REM Calculate Average Velocity
130 FOR 1=1 TO 20
140 SUM=SUM + V(IJ
150 NEXT I
160 AV=SUM/20

or

120 FOR 1=1 TO 20 ‘Calculate
125 ‘Average Velocity
130 SUM=SUM+V(I)
140 NEXT I
150 AV=SUM/20

or

120 ‘Calculate Average Velocity
130 FOR 1=1 TO 20
140 SUM=SUM+V(I)
150 NEXT I
160 AV=SUM/20

7-265

RENUM
Command

Changes the line numbers of the current
program.

Syntax RENUM [new linenum] [, [old linenum] [,
increment]]

new linenum is the first line number to be used in the new sequence. The
default is 10.

old linenum is the line in the current program where renumbering is to
begin. The default is the first line of the program.

increment is the increment to be used in the new sequence. The default
is 10.

RENUM also changes all line number
references following GOTO, GOSUB, THEN,
ON... GOTO, ON...GOSUB, RESTORE,
RESUME, and ERL statements to reflect the
new line numbers. If a nonexistent line
number appears after one of these statements,
the error message “Undefined line number
xxxxx in yyyyy” is printed. The incorrect line
number reference is not changed by RENUM,
but line number yyyyy may be changed.

Note
RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30
when the program has three lines numbered
10, 20 and 30) or to create line numbers greater
than 65529. An “Illegal function call” error
will result.

7-266

RENUM
Command

Examples REIMUM
Renumbers the entire program. The first new
line number will be 10. Lines will be numbered
in increments of 10.

REIMUM 300, , 50
Renumbers the entire program. The first new
line number will be 300. Lines will be
numbered in increments of 50.

REIMUM 1000, 900, 20
Renumbers the lines from 900 up, so they start
with line number 1000 and are numbered in
increments of 20.

7-267

RESET
Command

Closes all open data files on all drives.

Syntax RESET

Remarks RESET closes all open data files on all drives,
and forces all blocks in memory to be written
to disk. Thus,if the machine loses power, all
files will be properly updated. All files must be
closed before a disk is removed from its drive.

Note that RESET performs the same action as
CLOSE with no arguments, if all open data
file are residing on disk.

7-268

RESTORE
Statement

Permits DATA statements to be re-read either
from the beginning of the internal data file or
from a specified line.

Syntax RESTORE [linenum]

linenum must be the line number of a DATA statement

Remarks After a RESTORE statement is executed, the
next READ statement accesses the first item
in the first DATA statement in the program. If
“linenum” is specified, the next READ
statement accesses the first data item in the
specified DATA statement.

Example
10 READ A, B, C
20 RESTORE
30 READ D, E, F
40 DATA 58, 67, 97
50 PRINT A; B; C; D; E; F
RUN
58 67 97 58 67 97

Ok

7-269

RESUME
Statement

Syntax

RESUME
or

RESUME 0

RESUME
NEXT

RESUME
linenum

Remarks

Example

Continues program execution after an error
trapping routine has been performed.

RESUME {0 I NEXT I linenum}

execution resumes at the statement which caused the error

execution resumes at the statement immediately following
the one which caused the error

execution resumes at the specified line

Any one of the four formats shown above may
be used, depending upon where execution is to
resume.

A RESUME statement that is not in an error
handling routine causes a “RESUME without
error” message to be printed.

10 ON ERROR GOTO 900

900 IF (ERR=230) ANO (ERL=90) THEN
910 PRINT ‘‘TRY AGAIN” : RESUME 80

7-270

RIGHT$
Function

Returns a substring from a specified string,
extracting its rightmost characters.

Syntax RIGHTS (string , length)

string is a string expression whose value is the original string from
which a substring is to be returned

length is a numeric expression rounded to the nearest integer,
whose value (from 0 to 255) represents the length of the
returned string

Remarks If “length” is greater than or equal to
LEN(string), then the entire original string is
returned. When length=0, the null string
(length of zero) is returned.

Example 10 AS-(THIS IS GWBASIC”
20 PRINT RIGHT$(A$,5)
RUN
BASIC
Ok

Also see the LEFT$ and MID$ functions in
this chapter.

7-271

RMDIR
Command

Removes an existing directory.

Syntax RMDIR pathname

pathname is the name of the directory which is to be deleted

Remarks RMDIR works exactly like the MS-DOS
command RMDIR. The directory to be deleted
must be empty of all files and sub-directories
except the working directory (’.’) and the
parent directory entries, or a “Path not
found” error is given.

ROOT

SALES ACCOUNTING

FRED AMOS ANDY

WILMA

7-272

RMDIR
Command

With reference to our sample structure above,
we decide that we no longer want the sub
directory ANDY. Let us assume that our
current directory is ROOT. Then:

RMDIR “ACCOUNTINGXANDY”

deletes the directory ANDY.

On the other hand, if you want to make
ACCOUNTING the current directory and
remove the directory called AMOS then:

CHOIR “ACCOUNTING”
RMDIR “AMOS”

Possible Errors

“Bad File name”

“Path/File Access error” usually indicates
that the directory is not empty.

7-273

RND
Function

Returns a random number between 0 and 1.

Syntax RND [(numexp)]

numexp is a numeric expression which affects the returned value.
See the following “Remarks” section.

Remarks The same sequence of random numbers is
generated each time the program is RUN
unless the random number generator is
reseeded. You may reseed the generator either
by the RANDOMIZE statement or by the RND
function (specifying numexp<0). numexp<0
always restarts the same sequence for any
given “numexp" This sequence is not affected
by RANDOMIZE, so if you want to generate a
different sequence each time the program is
run, you have to use a different value of
numexp each time.

If numexp>0 or is omitted, RND(numexp)
generates the next random number in the
sequence. RND(O) repeats the last number
generated.

To get an integer random number in the range
0 (zero) to N, use:

iixiT (ri\i +1 n

7-274

RND
Function

Example 10 FOR 1=1 TO 5
20 PRINT INTtRND-X-100);
30 NEXT
RUN
24 30 31 51 5
Ok

7-275

RUN
Command

Runs the current program or loads a program
from disk and runs it.

Syntax 1 RUN [linenum]

Syntax 2 RUN filespec [,R]

linenum is the line number of the program resident in memory where
the execution must begin

filespec is a string expression which specifies the program to be
loaded and run

R if this option is specified all data files (that were opened
before loading the designated program) remain open

7-276

RUN
Command

Remarks If “linenum” is specified, execution begins on
that line. Otherwise, execution begins at the
lowest line number. GW BASIC always
returns to command level after a RUN
command. The name used when the file was
SAVEd is the name specified by “filespec” or
“pathname” (MS-DOS will append a default
.BAS filename extension if one was not
supplied in the SAVE command.) RUN
{filespec} closes all open files and deletes the
current contents of memory before loading the
designated program. However, with the “R”
option, all data files remain open.

RUN “B:NEWFILE”,R RUN AS

RUN 150

RUN “C:\R001\R002”

7-277

SAVE
Command

Syntax

filespec

Saves the current program on disk and gives it
a name. Option A saves the program in ASCII
format. Option P saves it protected.

SAVE filespec [, { AI P)]

is a string expression which specifies the name of the file to
be saved, and optionally the drive. If the filename extension
is omitted, .BAS is assumed. If the drive is omitted, the
default MS-DOS drive is assumed.

the A option will save the program in ASCII format.
Otherwise GW BASIC saves the file in a compressed binary
format. Programs saved in ASCII may be read as Data Files
or MERGEd.

the P option will save the program in an encoded binary
format. This is the protection option. When a protected
program is later RUN (or LOADed), any attempt to LIST or
EDIT it will fail with an ‘Tile- gal function call” error. No
way is provided to “unprotect” such a program.

7-278

SAVE
Command

Remarks If a file with the same name already exists on
the selected disk, it will be written over.

ASCII format takes more space on disk, but
some disk access requires that files be in
ASCII format. Attempts to MERGE binary
programs will result in a “Bad File Mode”
error.

If the filename is eight characters or less and
no extension is supplied, MS-DOS adds the
extension .BAS to the name.

Examples SAVE"SUPERB”
Saves the program in memory on the default
drive as SUPERB.BAS.

SAVE "A:PROG”,A
Saves the program in memory in ASCII form
on the diskette inserted on drive A, as
PROG.BAS; it may be later MERGEDd.

SAVE “B:SECRET”,P
Saves protected the program in memory on the
diskette inserted on drive B in protected form
as SECRET.BAS; it may not be altered.

7-279

SCREEN
Function

Returns the ASCII code (0-255) or the color
number for the character at the specified row
and column.

Syntax SCREEN (row, column [,condition])

row is a numeric expression returning an unsigned integer in the
range 1 to 25

column is a numeric expression returning an unsigned integer in the
range 1 to 40 or 1 to 80 depending on the width

condition is a valid numeric, relational or logical expression returning
a boolean result (0 or 1). condition is only valid in Text
Mode.

Remarks In text mode, if condition is given as non
zero, the color number for the character is
returned instead of the ASCII code. The color
is a number in the range 0-255. This number
(x) may be interpreted as follows:

• (x MOD 16) is the foreground color

• (((x-foreground)/16)MOD 128) is the
background color

• (x>127) is true (-1) if the character is blinking,
false (0) if not.

Refer to Appendix A for a complete list of
ASCII codes. The colors associated with each
number are listed under the COLOR
Command.

7-280

SCREEN
Function

Examples

In graphics mode the SCREEN function
returns zero if the specified location contains
graphics information.

100 X = SCREEN (10,10)
If the character at 10,10 is A, then x will
contain 65.

110 X = SCREEN (1,1,1)
Returns the color number of the character in
the upper left hand corner of the screen.

7-281

SCREEN
Statement

Sets the screen attributes that will be used by
subsequent statements.

Syntax SCREEN [mode] [, [burst] [,
[apage] [,vpage]]]

mode is a numeric expression resulting in an integer value of 0,1,
2, or 100. It defines either Text Mode (0), Medium-Resolution
Graphics Mode (1), High-Resolution Graphics Mode (2), or
Super- Resolution Graphics Mode (100).

burst is a numeric expression resulting in an integer value of 0 or
1. It enables color on a color TV set. In Text Mode (mode+ 0) a
0 value disables color, and a 1 value enables color. In
Medium- Resolution Graphics Mode (mode + 1) a 0 value
enables color, and a 1 value disables color. Both in High-
Resolution and Super-Resolution Graphics Mode (mode + 2
or 100) the burst value is ignored, as these two modes only
support monochrome. For a standard monitor, this
parameter has no meaning.

apage is an integer expression in the range 0 to 7 for width 40, or 0
to 3 for width 80. It selects the active page, i.e. the page to be
written to by output statements to the screen. If omitted, the
active page defaults to 0. This parameter is valid in Text
Mode only.

vpage is an integer expression in the range 0 to 7 for width 40, or 0
to 3 for width 80. It selects the visual page, i.e. the page to be
displayed on the screen. The visual page may be different
from the active page. If omitted, the visual page defaults to
the active page. This parameter is valid in Text Mode only.

7-282

SCREEN
Statement

Mode and Burst Parameters

In the following table the first two columns
are the “mode” and “burst” parameters of a
SCREEN statement.

Mode Burst Resolution
0 0 80 c. x 25 r. - B/W

Text Mode
0 80 c. x 25 r. - Color

Text Mode
0 320 hor.pixels x 200 vert,

pixels-
Color Medium Resolution
Graphics
(40 c. x 25 r.)

1 320 hor.pixels x 200 vert,
pixels-
B/W Medium Resolution
Graphics
(40 c. x 25 r.)

2 X 640 hor.pixels x 200 vert,
pixels-
B/W High Resolution
Graphics
(80 c. x 25 r.)

100 X 640 hor.pixels x 400 vert,
pixels-
B/W Super Resolution
Graphics
(80 c. x 25 r.)

7-283

SCREEN
Statement

Default Values

If you do not enter a SCREEN statement, the
system assumes the following default values:

mode = 0 (Text Mode)
burst = 0 (B/W)
apage = 0 (active page 0)
vpage = 0 (virtual page 0)

It would be the same as if you entered:

SCREEN 0,0,0,0

Apage and Vpage Parameters

If Text Mode is selected, you can specify two
more parameters “apage” and “vpage” to
select the active and visual page. There are
eight display pages (numbered 0 to 7) in 40-
column Text Mode, and four display pages
(numbered 0 to 3) in 80-column Text Mode.
Only one display page is available in any of
the three graphics modes.

7-284

SCREEN
Statement

Screen Width

At initialization the width is 80 columns, thus
you should use the WIDTH statement if you
want to select a 40-column screen. If you select
the medium resolution mode by the SCREEN
statement, this also causes the number of
columns to be 40 (without using the WIDTH
statement).

While in Text Mode, the WIDTH statement
may be used to select between the 40-column
mode and the 80-column mode. Likewise, the
WIDTH statement may be used to select
between modes 1 and 2 (medium or high-
resolution mode). See the WIDTH statement in
this chapter.

If all parameters are valid the new screen
mode is stored, the screen is erased, the
foreground and the background colors are set
to their default values. The SCREEN
statement must precede any I/O statement to
the screen, but you can use more than one
SCREEN statement to define different screen
attributes for different sections of your
program.

If all parameters are identical to the preceding
ones nothing is changed or erased.

If you omit a parameter, it keeps the old value
(except that the visual page defaults to the
active page.)

7-285

SCREEN
Statement

If you are in Text Mode and you switch active
pages back and forth, you should save the
cursor position on the current active page (see
POS(O) and CSRLIN) before changing to
another active page. #Note: There is only one
cursor shared among all the pages.

If you are in Text Mode and you return to the
original page you can restore the cursor
position by the LOCATE (Text) statement.

Examples 100 SCREEN 0,1,1,2
Selects 80-column text-mode with color, sets
active page to 1 and visual page to 2.

200 SCREEN 1,0
Switches to 40-column medium-resolution color
graphics.

300 SCREEN 0
Switches back to text-mode. The omitted
parameters assume the old values (except the
visual page that defaults to the active page).
Note that, if the last SCREEN statement
executed was statement 200, then statement
300 would switch to 40-column BW text mode
and set the active and visual pages to 0.

7-286

SGN
Function

Syntax

Remarks

Example

Returns 1 if the argument is positive, 0 if the
argument is zero, and -1 if the argument is
negative.

SGN (numexp)

If numexp >0, SGN(numexp) returns 1.
If numexp +0, SGN(numexp) returns 0.
If numexp <0, SGN(numexp) returns -1.

50 ON SGN (XJ+2 GOTO 300,400,500
branches to:

300 if numexp is negative, 400 if numexp is 0,
and 500 if numexp is positive.

7-287

SIN
Function

Calculates the sine of the argument.

Syntax SIN (numexp)

numexp is a numeric expression representing the angle in radians.

Remarks The SIN function is calculated in single
precision, unless “ZD” is supplied in the
GWBASIC command line.

Example PRINT SIN (1.5)

See also the COS function in this chapter.

7-288

SOUND
Statement

Produces sound via a speaker.

Syntax SOUND frequency, duration

frequency is a numeric expression in the range 37 to 32767. It represents
the Hertz frequency (cycles per second)

duration is the duration in clock ticks. Clock ticks occur 18.2 times per
second. Duration is an integer ex
pression in the range 0 to 65535.

Example 100 SOUND RND-K-100=37,2

This statement creates random sounds.

Remarks Sound x,0 or SOUND 32767,x cause silence.

7-289

SOUND
Statement

Notes and Frequencies

The following table correlates notes with their
frequencies for two octaves.

Note
C
D

F
G

B
C
D
E
F
G

B

♦middle C

Frequency Note Frequency
130.810 C* 523.250
146.830 D 587.330
164.810 E 659.260
174.610 F 698.460
196.000 G 783.990
220.000 A 880.000
246.940 B 97.770
261.630 C 1046.500
293.660 D 1174.700
329.630 E 1318.500
349.230 F 1396.900
392.000 G 1568.000
440.000 A 1760.000
493.880 B 1975.500

Doubling a frequency approximates a note one
octave higher. Halving it approximates a note
one octave lower.

7-290

SOUND
Statement

Tempos and Beats/Minute

This table shows typical tempos in terms of
clock ticks.

Tempo Beats/
Minute

Ticks/
Beat

very slow Larghissimo
Largo 40-60 28.13-18.75
Larghetto
Grave

60-66 18.75-17.05

Lento
Adagio 66-76 17.05-14.8

slow Adagietto
Andante 76-108 14.8-10.42

medium Andantino
Moderate 108-120 10.42-9.38

fast Allegretto
Allegro
Vivace

120-168 9.38-6.7

Veloce
Presto 168-208 6.7-5.41

very fast Prestissimo

7-291

SPACE$
Function

Returns a string of a specified number of
spaces.

Syntax

length

Example

SPACE$ (length)

is an integer expression in the range 0 to 255. It specifies the
number of spaces i.e. the length of the returned string.

10 FOR 1+1 TO 5
20 X$+SPACE$(I)
30 PRINT X$;l
40 NEXT I
RUN

1
2

3
4

5
OK

7-292

SPC
Function

Skips “n” spaces in a PRINT, LPRINT, or
PRINT# statement.

Syntax SPC (n)

n is an integer expression in the range 0 to 255. It specifies the
number of spaces to be inserted in the output line.

Remarks SPC may only be used with PRINT, LPRINT
and PRINT# statements.

Example

If “n” is greater than the defined width, then
the value used is “n MOD width”. A semicolon
(;) is assumed to follow the SPC function; thus
GW BASIC does not add a carriage return if
the SPC function is at the end of the list of
data items.

PRINT “FOUR” SPC(15) “SEASONS”
FOUR SEASONS

See also the SPACES function in this chapter.

7-293

SQR
Function

Returns the square root of a positive numeric
expression.

Syntax SQR (numexp)

Remarks SQR is calculated in single precision, unless
“ZD” is supplied in the GWBASIC command
line.

An “Illegal function call” error results if the
argument is negative.

Example 10 FOR X=10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT X
RUN
10 3.162278
15 3.872984
20 4.472136
25 5

Ok

7-294

STICK
Function

Returns the x and y coordinates of two
joysticks.

Syntax c=STICK(n)

n is a numeric expression in the range 0 to 3 which affects the
result as follows:

0 returns the x coordinate for joystick A.

1 returns the y coordinate of joystick A.

2 returns the x coordinate of joystick B.

3 returns the y coordinate of joystick B.

Note: STICK(O) retrieves all four values for the coordinates,
and returns the value for STICK(O). STICK(l), STICK(2),
and STICK(3) do not sample the joystick. They get the
values previously retrieved by STICK(O).

Remarks The range of values for x and y depends on
your particular joysticks.

Example: 10 PRINT “Joystick B”
20 PRINT “x”,“y”
30 FOR J=1 TO 100
40 TEMP STICK(O)
50 X=STICK(2): Y=STICK(3)
60 PRINT X,Y
70 NEXT

This program takes 100 samples of the
coordinates of joystick B and prints them.

7-295

STOP
Statement

Terminates program execution and returns to
command level. STOP is only used in a
program.

Syntax STOP

Remarks A STOP statement may be used anywhere in a
program. When a STOP is encountered, the
following message is displayed:

Break in nnnnn

Where nnnnn is the line number containing
the STOP statement.

The STOP statement does not close files,
unlike the END statement.

GW BASIC always returns to command level
after a STOP is executed. The CONT
command resumes execution.

Example 10 INPUT A,B,C
20 K=A u 2*5.3:L=B o 3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L
30.76923
Ok
CONT
115.9
Ok

7-296

STRIG
Statement and Function

Returns the status of the joystick buttons
(triggers).

Syntax As a statement:

STRIG ON

STRIG OFF

As a function:

n-STRIG(n)

n is a numeric expression in the range 0 to 7. It affects the
value returned by the function as follows:

0 Returns -1 if button Al was pressed since the last
STRIG(O) function call, returns 0 if not.

1 Returns -1 if button Al is currently pressed, returns 0 if
not.

2 Returns -1 if button Bl was pressed since the last
STRIG(2) function call, returns 0 if not.

3 Returns -1 if button Bl is currently pressed, returns 0 if
not.

7-297

STRIG
Statement and Function

Remarks

4 Returns -1 if button A2 was pressed since the last
STRIG(4) function call, returns 0 if not.

5 Returns -1 if button A2 is currently pressed, returns 0 if
not.

6 Returns -1 if button B2 was pressed since the last
STRIG(6) function call, returns 0 if not.

7 Returns -1 if button B2 is currently pressed, returns 0 if
not.

STRIG ON must be executed before any
STRIG(n) function calls may be made. After
STRIG ON, every time the program starts a
new statement BASIC checks to see if a button
has been pressed.

If STRIG is OFF, no testing takes place.

7-298

STRIG(n)
Statement

Syntax

Enables and disables trapping of the joystick
buttons.

STRIG(n) ON

STRIG(n) OFF

STRIG(n) STOP

n may be 0, 2, 4, or 6, and indicates the button to be trapped
as follows:

Remarks

0 button Al
2 button Bl
4 button A2
6 button B2

STRIG(n) ON must be executed to enable
trapping by the ON STRIG(n) statement (see
“ON STRIG(n) Statement” in this chapter).
After STRIG(tz) ON, every time the program
starts a new statement, BASIC checks to see if
the specified button has been pressed.

If STRIG(n) OFF is executed, no testing or
trapping takes place. Even if the button is
pressed, the event is not remembered.

If a STRIG(n) STOP statement is executed, no
trapping takes place. However, if the button is
pressed it is remembered so that an immediate
trap takes place when STRIG(ti) ON is
executed.

7-299

STR$
Function

Syntax

Remarks

Example

Returns the string representation of the value
of a specified numeric expression.

STR$(numexp)

For positive numbers, the string generated by
STR$ has a leading blank for the sign field.

See the complementary VAL function in this
chapter.

10 AS = STR$(70)
20 PRINT AS
RUN
70

Ok

70 (the argument of STR$) is a number, but the
contents of A$ is a two character string whose
value is “70”.

7-300

STR$
Function

Example 5 REM ARITHMETIC FOR KIDS
10 INPUT “TYPE A NUMBER”;N
20 ON LEN(STR$(ND GOSUB
30,100,200,300,400,500

The entered number N is converted to a string
by the STR$ function. The program then
branches according to the number of digits in
the number entered.

Example 10 A! = 1.3
20 A# = VAL(STR$(A!D
30 PRINT A#
RUN
1.3

Ok

The conversion in line 20 causes the value in
A! to be stored accurately in the double
precision variable A#.

7-301

STRINGS
Function

Returns a string of specified length whose
characters all have the same ASCII code or
equal the first character of a given string.

Syntax STRING# (length , code)

STRING# (length , stringexp)

length specifies the length of the resulting string. (0-255).

code specifies the ASCII code of the character used to form the
resulting string (0-255).

stringexp is a string expression whose first character is used to form
the resulting string.

Example 10 X$+STRING$(10,45)
20 PRINT X$ “MONTHLY REPORT” X$
RUN
-------------- MONTHLY REPORT---------------

7-302

SWAP
Statement

Exchanges the values of two variables.

Syntax SWAP variablel , variable2

variablel
and
variable2

are two variables of the same type (integer, single- precision,
double-precision, or string)

Remarks The two variables must be of the same type or
a “Type Mismatch” error occurs. The second
variable must already be defined or an
“Illegal function call” error occurs.

Example 10 A$=“ONE”:B$=“ALL”:C$=“FOR”
20 PRINT AS C$ BS
30 SWAP AS, BS
40 PRINT AS C$ BS
RUN
ONE FOR ALL
ALL FOR ONE
Ok

7-303

SYSTEM
Command

Closes all open data files and returns to
MS-DOS.

Syntax SYSTEM

Remarks When a SYSTEM command is executed, all
open files are closed, and control is returned to
MS-DOS. Your GW BASIC program is lost. If
you entered GW BASIC through a Batch file
from MS-DOS, the SYSTEM command returns
control to the Batch file.

7-304

TAB
Function

Tabs the cursor or the print head to a specified
position, in PRINT, LPRINT, or PRINT#
statements.

Syntax TAB(n)

n is an integer expression in the range 1 to 255.

Remarks If the current cursor or print position is
already beyond the specified value, “n” TAB
goes to that position on the next line. Space 1
is the leftmost position, and the rightmost
position is the defined width.

If the value of “n” exceeds the defined width,
the modulo operation is applied. For example,
PRINT TAB(243) on a 40-column screen is the
same as PRINT TAB(3), because 243 MOD
40+3.

A semicolon is assumed to follow the TAB
function; thus GW BASIC does not add a
carriage return if the TAB function is at the
end of the list of data items.

Example 10 PRINT “NAME” TABC25) “AMOUNT” :
PRINT

20 READ AS,BS
30 PRINT AS TABC25) BS
40 DATA “G. T. JONES”,”S25.00’
NAME AMOUNT

G.T. JONES S25.00
Ok

7-305

TAN
Function

Syntax

numexp

Remarks

Example

Returns the tangent of the argument.

TAN (numexp)

is a numeric expression representing the angle in radians

TAN(numexp) is calculated in single precision
(unless “/D” is supplied in the GWBASIC
command line).

If TAN overflows, the “Overflow” error
message is displayed, machine infinity with
the appropriate sign is supplied as the result,
and execution continues.

10 Y =Q*TAI\l(x)/2

7-306

TIME$
Statement and Function

The TIME$ statement sets the current time.
The TIMES function retrieves the current
time.

Syntax TIME$ = stringexp
stringvar = TIMES

stringexp is a string expression indicating the time to be set

stringvar is a string variable in which the current time (8 character
string) is returned

Remarks As a statement (TIME$=stringexp):

'‘stringexp” is a string expression indicating
the time in the form:

• hh (sets the hour; minutes and seconds default
to 00), or

• hh:mm (sets the hour and minutes; seconds
default to 00), or

• hh:mm:ss (sets the hour, minutes and seconds)

A 24 hour clock is used; therefore 8:00 p.m.
would be entered as 20:00:00.

A leading zero may be omitted from any of the
above values, but you must include at least
one digit for each field higher than the lowest
field set. For example, 00:00:42 is the same as
0:0:42, but :42 is incorrect.

Note that the time may also have been set by
MS-DOS prior to entering GW BASIC.

7-307

TIME$
Statement and Function

As a function (stringvar=TIME$):

The TIME$ function returns an eight
character string in the form hh:mm:ss, where
hh is the hour (00 through 23), mm is minutes
(00 through 59), and ss is seconds (00 through
59).

Examples TIMES = “8:0”
Ok
PRINT TIMES
08:00:04
Ok

The following program displays the current
date and time on the 25th line of the screen
and assigns the number of seconds after the
minute to the variable SEC.

10 KEY OFF:SCREEN 0,0,0:015
20 LOCATE 25,5
30 PRINT DATES„TIMES
40 SEC=VAL(MID$(TIME$,7,2D

Possible Errors

• An “Illegal function call” error is issued, if
any of the values are out of range. The
previous time is retained.

• A “Type mismatch” error is issued, if
“stringexp” is not a valid string.

7-308

TIMER
Function

Returns a single-precision number indicating
the seconds that have elapsed since midnight
or system reset.

Syntax TIMER

Remarks TIMER is a numeric read-only function. It
calculates fractional seconds to the nearest
degree possible. It may not be used as a user
variable.

Example 10 TIMES = “23:59:59’
20 FOR K = 1 TO 10
30 PRINT “TIME$=”;TIME$j“TIME=”;TIMER
40 NEXT
40 NEXT

7-309

TIMER {ON I OFF I STOP}
Statements

Syntax

Remarks

TIMER ON enables TIMER event trapping.
TIMER OFF disables TIMER event trapping.
TIMER STOP suspends TIMER event
trapping.

TIMER {ON I OFF I STOP}

The TIMER ON statement enables real time
event trapping by an ON TIMER GOSUB
statement. While trapping is enabled with the
ON TIMER GOSUB statement, GW BASIC
checks between every statement to see if the
timer has reached the specified level. If it has,
the ON TIMER GOSUB statement is
executed.

TIMER OFF disables the event trap. If an
event takes place, it is not remembered if a
subsequent TIMER ON is used.

TIMER STOP disables the event trap, but if
an event occurs, it is remembered and an ON
TIMER GOSUB statement will be executed as
soon as trapping is enabled.

Also see ON TIMER GOSUB statement in
this chapter.

7-310

TRON/TROFF
Commands

TRON (TRACE ON) causes the line number of
each statement executed to be listed.

TROFF (TRACE OFF) stops the line number
listing initiated by TRON.

Syntax TRON
TROFF

Remarks The TRON statement (executed in either
immediate or program mode) is used as a
debugging tool, since it enables a trace flag
that displays each line number of the program
as it is executed. The numbers appear enclosed
in square brackets. The trace flag is disabled
with the TROFF statement (or when a NEW
command is executed).

Example Ok
10 K=10
20 FOR J=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+10
60 NEXT
70 END
Ok
TRON
Ok
RUN

[10H20H30H40] 1 10 20
[50][60)[30J[401 2 20 30
[50H60H701

Ok

7-311

USR
Function

Calls a machine language subroutine.

Syntax USR [n](argument)

n is in the range 0 to 9 and corresponds to the digit supplied
with the DEF USR statement for that routine. If omitted
USR 0 is assumed.

argument is the value passed to the subroutine. It may be any numeric
or string expression. Even if the subroutine does not require
an argument, a dummy argument must be supplied.

Remarks The type (numeric or string) of the variable
receiving the function call must be consistent
with that of the argument passed (see
Chapter 6).

Prior to calling each USR function, a
corresponding DEF USR statement must be
executed to define the USR function call offset.
This offset and the currently active DEF SEG
address determine the starting address of the
subroutine.

The CALL statement is another way to call a
machine language subroutine.

7-312

USR
Function

Example 100 DEF SEG=&H8000
110 DEF USRO=O
120X=5
130 Y = USRO(X)
140 PRINT Y

Calls a machine language subroutine at
8000H. It passes 5 as an argument and returns
a value in Y.

7-313

VAL
Function

Syntax

Remarks

Converts the string representation of a
number to its numeric value.

VAL (stringexp)

VAL function strips leading blanks, tabs, and
linefeeds from the argument string.

The remaining string is converted to a
number, if it is a valid numeric representation,
otherwise VAL returns 0 (zero). For example:

VAL (“-3”)

Example

returns -3.

VAL (“ABC”)

returns 0

See the STR$ function in this chapter for
numeric-to-string conversion.

OK
PRINT VAL(“394 LOWELL ST”)

394
OK

7-314

VARPTR
Function

Syntax 1

Syntax 2

variable

filenum

Remarks

Returns the memory address of the variable or
file control block.

VARPTR (variable)

VARPTR (#filenum)

is the name of a numeric or string variable in the program

is the number under which the file was opened

For both formats, the address returned is an
integer in the range 0 to 65535. This number is
the offset into GW BASIC’s Data Segment.
The address is not affected by the DEF SEG
statement.

7-315

VARPTR
Function

Syntax 1 Returns the address of the first byte of data
identified with “variable”.

A value must be assigned to “variable” prior
to execution of VARPTR. Otherwise an
“Illegal function call” error results. Any type
of variable may be used (numeric, string).

VARPTR is usually used to obtain the address
of a variable or array so that it may be passed
to a machine language subroutine. A function
call of the form VARPTR(A(0)) is usually
specified when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a
new simple variable is assigned.

7-316

VARPTR
Function

Syntax 2

Example

Returns the starting address of the file control
block for the specified file.

10 X = USR(VARPTRCYJ)

■
110 OPEN “A:FILEA,DAT” AS #2
120 GET #2 'get address of FOB
130 FCBADR = VARPTR(#2)

7-317

VARPTR$
Function

Syntax

variable

Remarks

Returns a character form of the memory
address of the variable.

VARPTR$ (variable)

is a variable existing in the program.

A value must be assigned to “variable” prior
to execution of VARPTR$. Otherwise, an
“Illegal function call” error results. Any type
of variable (numeric, string) may be used.

VARPTR$ returns a three-byte string in the
form:

byte 0 = type
byte 1 = low byte of address
byte 2 = high byte of address

Note that type indicates the variable type:

2 integer
3 string
4 single-precision
8 double-precision

7-318

VARPTRS
Function

Because array addresses change whenever a
new simple variable is assigned, always
assign all simple variables before calling
VARPTR$ for an array element.

The returned value is the same as:

CHR$(type)+MKI$(VARPTR(variable))

You can use VARPTRS to indicate a variable
name in the command string for DRAW. For
example:

DRAW “0=1;”

or

DRAW "0=”+VARPTR$(D

7-319

VIEW
Statement

Defines subsets of the screen called
“viewports;” into these, window contents will
be mapped. (Graphics Mode only).

Syntax VIEW [[SCREEN] [(xl, yl) - (x2, y2)
[, [color] [, [border]]]]]

(xl,yl)-(x2,y2) represent the ‘x’ and ‘y’ coordinates within the physical
boundary of the screen that graphics will map into, (xl, yl)
are the upper-left, and (x2, y2) the lower-right coordinates of
the viewport defined.

color permits the defined viewport to be filled with a specified
color. If ‘color’ is omitted then the viewport is not filled-in.

border permits the drawing of a border-line around the viewport (if
the necessary space is available). If border is omitted, no
border-line is drawn.

7-320

VIEW
Statement

Remarks Initially, RUN or VIEW with no arguments
define the entire screen as the viewport.

For the form:

VIEW (xl,yl) - (x2,y2)'

all points plotted are relative to the viewport.
That is, “xl” and “yl” are added to the x
and y coordinates before putting down the
point on the screen.

If:

VIEW (10,10) - (200,100)

were executed, then the point set down by the
statement PSET(0,0),3 would actually be at
the physical screen location 10,10.

7-321

VIEW
Statement

For the form:

VIEW SCREEN (xl,yl)-(x2,y2)

all coordinates are absolute and may be inside
or outside of the screen limits, but only those
within the VIEW limits will be plotted.

If:

VIEW SCREEN (10,10)-(200,100)

were executed, then the point set down by the
statement PSET(0,0),3 would actually not
appear because 0,0 is outside of the viewport.
PSET (10,10),3 is within the viewport, and
places the point in the upper-left hand corner
of the viewport.

VIEW with no arguments defines the entire
viewing surface as the viewport. This is
equivalent to VIEW (0,0)-(319,199) in medium
resolution, VIEW (0,0)-(639,199) in high
resolution, and VIEW (0,0)-(639,399) in super
resolution.

Multiple viewports can be defined, but only
one viewport (called the “current viewport”)
may be active at any one time. Each time a
VIEW statement is executed a viewport is
defined and this is the current viewport. Thus,
to change the current viewport, you have to
execute another VIEW statement.

7-322

VIEW
Statement

A number of VIEW statements may be
executed. If the newly described viewport is
not wholly within the previous viewport, the
screen can be re-initialized with the VIEW
statement with n arguments. Then the new
viewport may be stated. If the new viewport is
entirely within the previous one, as the
first of the following examples, the
interdediate VIEW statement is not necessary.

RUN and SCREEN will disable the viewports.

VIEW and WINDOW statements allow you to
do scaling by changing the size of your
viewport. A large viewport will make your
objects large and a small viewport will make
your objects small. (Refer to “WINDOW
Statement” in this chapter.)

7-323

VIEW
Statement

Example 1 This example opens three viewports, each
smaller than the previous one. In each case, a
line that is defined to go beyond the borders is
programmed, but appears only within the
viewport border.

260 CLS
280 VIEW: REM Make the viewport the entire

screen.
330 VIEW (10,10) - (300,180)„1
320 CLS
320 LINE (0,0) - (310,190),1
360 LOCATE 1,11: PRINT “A big viewport”
380 VIEW SCREEN (50,50)-(250,150)„1
400 CLS:REM-'H? Note, CLS clears only viewport
420 LINE (300,0)-(0,1 99),1
440 LOCATE 9,9: PRINT “A medium viewport”
460 VIEW SCREEN (80,80)-(200,1 25)„1
480 CLS
500 CIRCLE (150,100),20,1
520 LOCATE 11,9: PRINT “A small viewport”

This example demonstrates scaling with
VIEW and WINDOW.

7-324

VIEW
Statement

Example 2 10 KEY OFF:CLS:SCREEN 1,0:COLDR0,0
20 WINDOW SCREEN(0,0)-(320,200)
30 GOSUB 70:FDR K=1 TO 1000:NEXT :CLS
40 VIEW (1,1)-(160,90)„2:G0SUB 70
50 ‘Make it small
60 GOTO 100
70 ‘Create the picture
80 CIRCLE (160,100),60,1,„1
90 RETURN

100 END

The following example defines two viewports:

Examples 10 SCREEN 1:VIEW:CLS:KEY off
20 VIEW (1,1)-(151,91)„1
30 VIEW (165,1)-(315,91)„2
40 LOCATE 2,4:PRINT "Viewport 1’
50 LOCATE 2,25:PRINT “Viewport 2’
60 VIEW (1,1)-(151,91):GOSUB 500
70 VIEW (165,1)-(315,91):GOSUB 1000
80 END

500 'Draw a circle in first viewport
510 CIRCLE (65,50),30,2
520 RETURN

1000 'Draw a line in second viewport
1010 LINE (45,50)-(90-75),1,8
1020 RETURN

7-325

VIEW PRINT
Statement

Sets the boundary of the text window.

Syntax VIEW PRINT [linel TO line2]

linel is the top line of the text window

line2 is the bottom line of the text window

Remarks Statements and functions which operate
within the text window include CLS,
LOCATE, and the SCREEN function. The
Screen Editor will limit functions such as
scroll and cursor movement to the text
window.

If no parameters are specified, VIEW PRINT
will initialize the text window to include the
whole screen.

Example VIEW PRINT 1 TO 5

creates a text window of 5 lines on the top of
the screen.

7-326

WAIT
Statement

Suspends program execution while monitoring
the status of a machine input port. WAIT may
only be used in a program.

Syntax WAIT port, i [, j]

port is the port number, in the range 0 to 65535

ij are integer expressions in the range 0 to 255

Remarks The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is XORed with the integer
expression “j” and then ANDed with “i”. If
the result is zero, GW BASIC loops back and
reads the data at the port again. If the result is
nonzero, execution continues with the text
statement. If “j” is omitted, it is assumed to be
zero.

Note
It is possible to enter an infinite loop with the
WAIT statement.

You can do a CTRL-BREAK or a System
Reset to exit the loop.

Example 100 WAIT 32, 2

7-327

WHILE ... WEND
Statements

Loop through a series of statements as long as
a given condition remains true.

Syntax WHILE condition loop statements WEND

condition is a numeric, relational or logical expression. GW BASIC
determines whether the condition is true or false by testing
the result of the expression for non zero and zero, respec
tively. A non zero result is true and a zero result is false.
Because of this, you can test whether the value of a variable
is non zero or zero by merely specifying the name of the
variable as a condition.

loop statements are executed until a WEND statement is
encountered

Remarks If “condition” is not zero (i.e., true), “loop
statements” are executed until the WEND
statement is encountered. GW BASIC then
returns to the WHILE statement and checks
“condition” If it is still true, the process is
repeated. If it is zero (i.e. false), execution
resumes with the statement following the
WEND statement. WHILE/WEND loops may
be nested to any level. Each WEND will
match the most recent WHILE. An unmatched
WHILE statement causes a “WHILE without
WEND” error, and an unmatched WEND
statement causes a “WEND without WHILE”
error.

Do not direct program flow into a
WHILE/WEND loop without entering
through the WHILE statement.

7-328

WHILE ... WEND
Statements

Example 90 ‘BUBBLE SORT ARRAY AS
100 FLIPS=1 'FORCE ONE PASS
110 WHILE FLIPS
115 FLIPS=O
120 FOR 1=1 TO J-1
130 IF A$(I)>A$(I+1) THEN 150
133 FLIPS=1
135 SWAP A$(l), A$(l+1)
140 NEXT I
150 WEND

7-329

WIDTH
Statement

Sets the line width in characters. GW BASIC
adds a carriage return after outputting the
specified number of characters.

Syntax 1 WIDTH [LPRINT] size

Syntax 2 WIDTH filenum, size

Syntax 3 WIDTH device, size

size is an integer expression in the range 0 to 255. It specifies the
new width. WIDTH 0 is the same as WIDTH 1.

filenum is a numeric expression in the range 1 to 15. This is the
number of a file OPENed to one of the devices listed below

device is a string expression returning the device identifier. Valid
devices are: SCRN:, LPT1:, LPT2:, LPT3:, COM1:, COM2:,
COM3:, or COM4:.

7-330

WIDTH
Statement

WIDTH LPRINT size

Sets the line width at the line printer.

WIDTH size or WIDTH “SCRN:”,size

Sets the screen width (in Text mode), selects a
text window or changes mode (in Graphics
mode). Changing the screen or text window
width, or the mode, causes the screen to be
cleared.

In Text Mode (mode 0) “size” may only have
the values 40 or 80, selecting either a 40-
column or an 80-column screen.

In Graphics Mode (mode 1, 2, or 100) you can
either change mode or select a text window to
the left of the screen of width less than or
equal to 40 (mode 1) or less than or equal to 80
(mode 2 or 100). The width of the function key
display will correspond to the selected width.
If the number of columns displayed is less
than 80 columns, a CTL-T may be entered to
scroll the function key display horizontally.

7-331

WIDTH
Statement

The following summarizes all possible cases.

0
(text)

40

80

80

select a 40-column screen

select an 80-column screen

place the system in high-
resolution (mode 2)

1
(medium-res)

8<=size<=40

40

create a text window of width
i • >size
place the system in medium
resolution (mode 1) with
‘burst’ in whatever state the
system was when a text or
medium-resolution mode was
last used

2
(high-res)

8<=size<=39

or
41=<size<=80

size=4

create a text window of width
‘size’

create a text window of width
40

100
(super-res)

8<=size<=80

8<=size-80<=80

create a text window of width
size

create a text window of widthi • ?size

7-332

WIDTH
Statement

WIDTH filenum,size

Changes the width of the device associated
with “filenum” to the new “size” specified, this
form of the WIDTH statement has meaning
only for: LPT1:, LPT2:, LPT3:, C0M1:, COM2:,
COM3:, and COM4:. This allows the width to
be changed while the file is open.

WIDTH device,size

Stores the new ‘size’ without changing the
current width, if the device is already open. A
subsequent OPEN device FOR OUTPUT AS #
n will use this value of “size” for width as long
as the file is open.

Note that LPRINT, LLIST and LIST,“LPTn”
do an implicit open and are therefore affected
by this statement.

Remarks When the WIDTH statement causes a change
in the screen mode, colors are set to their
default values.

You should turn the function key display off
when changing the window width (by a KEY
OFF statement), otherwise, if the width is
decreased, part of the old (wider) function key
display may be left on the screen.

7-333

WIDTH
Statement

Example

If “size” is 255, the line width is “infinite”;
that is, GW BASIC never inserts a carriage
return. However, the position of the cursor or
the print head, as given by the POS or LPOS
function, returns to zero after position 255.
WIDTH 255 is the default for communications
files.

Changing the width for a communications file
does not alter the receive buffer, it just tells
GW BASIC to send a carriage return after
every “size” character.

Possible Errors

If “size” is outside the above specified ranges,
an “Illegal function call” error is returned. The
previous value is retained.

10 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ”
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ
Ok

7-334

WIDTH
Statement

Example 10 WIDTH “LPT1:”, 5
20 OPEN “LPT1FOR OUTPUT AS 1
30 PRINT 1, “1234567890”
35 PRINT 1
40 WIDTH 1,6
50 PRINT 1, “1234567890”

will yield on the printer

12345
67890

123456
7890

7-335

WINDOW
Statement

Syntax

(xl,yl)
-(x2,y2)

Remarks

Permits the redefinition of the screen
coordinates. (Graphics Mode only).

WINDOW [[SCREEN] (xl, yl) - (x2, y2)]

(xl,yl) represent the upper-left coordinates of the window.
(x2,y2) represent the lower-right coordinates of the window.
These coordinates may be any single precision floating
point number.

WINDOW allows you to draw lines, graphs, or
objects in space not bounded by the physical
limits of the screen. This is done by using
arbitrary programmer-defined coordinates
called “world coordinates”.

A world coordinate is any valid single
precision floating point number pair. GW
BASIC then converts world coordinate pairs
into the appropriate physical coordinate pairs
for subsequent display within screen space. To
make this transformation from world space to
the physical space of the viewing surface
(screen), GW BASIC must know what portion
of the unbounded (floating point) world
coordinate space contains the information you
want to be displayed.

This rectangular region in world coordinate
space is called a window.

7-336

WINDOW
Statement

WINDOW defines the “window”
transformation from xl,yl (upper left x,y
coordinates) to x2,y2 (lower right x,y
coordinates). The x and y coordinates may be
any single precision floating point number
and define the “World Coordinate Space” that
graphics will map into the physical coordinate
space, as defined by the VIEW statement.

Initially, RUN, or WINDOW with no
arguments, disables “Window”
transformation.

WINDOW inverts the “y” coordinate on the
subsequent graphics statement. This allows
the screen to be viewed in true cartesian
coordinates. The WINDOW SCREEN variant
does not invert the “y” coordinate.

7-337

WINDOW
Statement

In the physical coordinate system, if you run
the following:

NEW
or
SCREEN 2

the screen will appear with standard
coordinates as:

If a window command is issued with SCREEN
omitted, the screen is viewed in the
CARTESIAN coordinates.

7-338

WINDOW
Statement

For example if:

WINDOW ,1)

was executed then the screen appears as:

-1 ,1 0,1 1,1

y increases

0,0

y decreases

-1 ,-l 0,-1 1,-1

Note now that the “y” coordinate is inverted
so that (xl,yl) is the lower-left coordinate and
(x2,y2) is the upper-right coordinate.

If the SCREEN attribute is included then, the
coordinates are not inverted. So that, (xl,yl) is
the upper-left coordinate and (x2,y2) is the
lower-right coordinate.

7-339

WINDOW
Statement

For example:

WINDOW SCREEN (-1,4)-(!,!)

appears as:

-1,-1 0,-1 1,-1

y decreases

0,0

y increases

-1,1 0,1 1,1

All possible pairings of “x” and “y” are valid.
A restriction is that “xl” cannot equal “x2”
and “yl” cannot equal “y2”

The WINDOW statement uses a process called
“clipping”, whereby pixels which are
referenced outside a coordinate range are
excluded from the viewing area. Any object
lying partially within and partially without a
coordinate range is clipped so that only the
pixels referenced in range will appear.

7-340

WINDOW
Statement

WINDOW also features a “zoom in’7“zoom
out” facility. Choosing window coordinates
larger than an image will display the entire
image, but the image will be small. Choosing
window coordinates smaller than an image
will cause clipping, allowing only a portion of
the image to be displayed and magnified. By
specifying small and large window sizes, you
can zoom in until an object occupies the entire
screen, or you can zoom out until the image is
nothing but a spot on the screen.

RUN, SCREEN, and WINDOW with no
attributes will disable any WINDOW
coordinates and return the screen to physical
coordinates.

Examples The following example demonstrates image
clipping.

10 SCREEN 100
20 CLS
30 WINDOW (-6,-6)-(6,6)
40 CIRCLE (4,4),5,1
50 ‘the circle is large - only part is visible
60 WINDOW (-1 00,-1 00)-(100,1 00)
70 CIRCLE (4,4),5,1 ‘the circle is small
80 END

7-341

WINDOW
Statement

The following example shows the effect of
zooming.

10 KEY OFF:CLS:SCREEN 1,0
20 X=1000:WINDOW t-X,-X)-(X,X):R=20
30 'create a graph with large coord range
40 GOSUB 1OOQ:FOR K=1 TO 10OO:NEXT:CLS
50 X=60:WINDOW (-X,-X)-(X,X):R=20
60 ‘smaller coord range increases circle size
70 GOSUB 10OO:FOR K=1 TO 1OOO:NEXT:CLS
80 X=100:WINDOW (-5,-5)-(X,X): R=20
90 'modify window to show only portion of axes

100 GOSUB 1000:F0R K=1 TO 1000:NEXT :CLS
110 PRINT" ZOOMING ”
120 CLS:T=-50:U=100:X=U
130 FOR K=7 TO 1500:NEXT
140 i=OR K=1 TO 45
150 T=T + 1 :U=U - 1 :X=X-1 :R=20
160 WINDOW (T,T)-(U,U):CLS:GOSUB 1000
170 NEXTK
180 END

1000 ‘Subroutine display
1010 LINE (X,0)-(-X,0)„,&HAA00 'create x axis
1020 LINE (0,X)-(0,-X),„&HAA00 ‘create y axis
1030 CIRCLE (X/2,X/2),R ‘circle has radius r
1040 FOR K=1 TO 50:NEXT ‘delay
1050 RETURN

7-342

WINDOW
Statement

The following example illustrates two lines
with the same endpoint coordinates. The first
is drawn on the default screen, and the second
is on a redefined window.

200 LINE (100,100) - (150,150), 1
220 LOCATE 2,20:PRINT “The line on the default screen”
240 WINDOW SCREEN (100,100)4200,200)
260 LINE (100,100) - (150,150), 1
280 LOCATE 8,18:
300 PRINT “6 the same line, new window”

7-343

WRITE
Statement

Writes data to the screen.

Syntax WRITE [list_of_expressions]

list-of-expressions

Remarks

list of numeric and/or string expressions. They must be
separated by commas.

If “list-of-expressions” is omitted, a blank line
is output. If “list-of-expressions” is included,
the values of the expressions are output on the
screen.

Example

When the values of the expressions are output,
each item is separated from the last by a
comma. Strings are delimited by quotation
marks. After the last item in the list is
displayed, GW BASIC inserts a CR LF.

WRITE and PRINT are similar. The
difference between WRITE and PRINT is that
WRITE inserts commas between the items on
the screen and delimits strings with quotation
marks. Also positive numbers are not
preceded by blanks.

10 A=80:B=90:C$=“THAT’S ALL”
20 WRITE A,B,C$
RUN
80, 80,“THAT’S ALL”
Ok

7-344

WRITE#
Statement

Writes data to a sequential file.

Syntax WRITE#filenum,list-of-expressions

filenum is the number under which the file was OPENed in “0”
mode (see “OPEN” Statement in this chapter).

list-of-expressions
list of string or numeric expressions. They must be separated
by commas.

The difference between WRITE# and PRINT#Remarks
is that WRITE# inserts commas between the
items as they are written to the file and
delimits strings with quotation marks. Also,
WRITE# does not precede positive numbers
with blanks. Therefore, it is not necessary for
the user to put explicit delimiters in the list. A
CR LF sequence is inserted after the last item
in the line is written to the file.

7-345

WRITE#
Statement

Example 10 A$=“CAMERA” : B$=’93604-1’
20 WRITE#1,A$,B$

Statement 20 writes the following image to
disk:

“CAMERA”,”93604-1 ”

A subsequent INPUT# statement, such as

30 INPUT#1,A$,B$

would input “CAMERA” to A$ and “93604-1”
to B$.

7-346

Tables

• ASCII Code

• Hexidecimal Conversion Tables

• Binary to Hexidecimal
Conversion Table

• Mathematical Functions

This Page Left Intentionally Blank.

A-2

Control characters (codes 0 to 31) Printed characters (codes 32 to 127)

runctions marked * are unused or archaic

Dec Hex Char Function Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL Null —no character, no action 32 20 SPace 64 40 @ 96 60
1 01 SOH Start of Heading* 33 21 ! 65 41 A 97 61 a
2 02 STX Start of Text* 34 22 “ 66 42 B 98 62 b
3 03 ETX End of Text (Block mode—ETX/ACK) 35 23 # 67 43 C 99 63 c
4 04 EOT End of Transmission* 36 24 $ 68 44 D 100 64 d
5 05 ENQ Enquiry* 37 25 % 69 45 E 101 65 e
6 06 ACK Acknowledge (Block mode—ETX/ACK) 38 26 & 70 46 F 102 66 f
7 07 BEL Bell —ring or beep 39 27 ‘ 71 47 G 103 67 g
8 08 BS Backspace—Move back one character 40 28 (72 48 H 104 68 h
9 09 HT Horizontal Tab—skip to next stop 41 29) 73 49 I 105 69 i

10 0A LF Line Feed—Move down one line 42 2A * 74 4A J 106 6A j
11 0B VT Vertical Tab* 43 2B + 75 4B K 107 6B k
12 OC FF Form Feed—Move to new page 44 2C , 76 4C L 108 6C I
13 0D CR Carriage Return—Go to start of line 45 2D - 77 4D M 109 6D m
14 0E SO Shift Out* 46 2E . 78 4E N 110 6E n
15 OF SI Shift In* 47 2F / 79 4F O 111 6F 0
16 10 DLE Data Link Escape* 48 30 0 80 50 P 112 70 P
17 11 DC1 Device Control 1—X-ON (CTRL-Q) 49 31 1 81 51 Q 113 71 q
18 12 DC2 Device Control 2* 50 32 2 82 52 R 114 72 r
19 13 DC3 Device Control 3—X-OFF (CTRL-S) 51 33 3 83 53 S 115 73 s
20 14 DC4 Device Control 4* 52 34 4 84 54 T 116 74 t
21 15 NAK Negative Acknowledge* 53 35 5 85 55 U 117 75 u
22 16 SYN Synchronous Idle* 54 36 6 86 56 V 118 76 V
23 17 ETB End of Transmission Block* 55 37 7 87 57 w 119 77 w
24 18 CAN Cancel* 56 38 8 88 58 X 120 78 X

25 19 EM End of Medium* 57 39 9 89 59 Y 121 79 y
26 1A SUB Substitute* 58 3A : 90 5A z 122 7A z
27 1B ESC Escape (Normally calls command menu) 59 3B ; 91 5B 123 7B
28 1C FS File Separator* 60 3C < 92 5C \ 124 7C I

I
29 1D GS Group Separator* 61 3D = 93 5D 125 7D
30 1E RS Record Separator* 62 3E > 94 5E A 126 7E —
31 1F US Unit Separator* 63 3F ? 95 5F 127 7F DELete

DEL (127) is actually a control character

ASCII
value

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

ASCII Codes

Character

(null)

♦

♦
(beep)

(tab)
(line feed)
(home)
(form feed)
(carriage return)

►

I
II• •
<r

§

r

i

(cursor right)
(cursor left)
(cursor up)
(cursor down)

Control
character

NUL
SOH
STX
ETX
EOT
ENO
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

ASCII
value

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

Character

(space)
I■
t1

$
0//o

&
/

{
)
*

I
0
1
2
3
4
5
6
7
8
9

ASCII Codes

ASCII ASCII
value Character value Character

064 @ 096
065 A 097 a
066 B 098 b
067 C 099 c
068 D 100 d
069 E 101 e
070 F 102 f
071 G 103 g
072 H 104 h
073 I 105 i
074 J 106 j
075 K 107 k
076 L 108 I
077 M 109 m
078 N 110 n
079 0 111 0

080 P 112 P
081 Q 113 q
082 R 114 r
083 S 115 s
084 T 116 t
085 U 117 u
086 V 118 V

087 w 119 w
088 X 120 X

089 Y 121 y
090 z 122 z
091 123 I
092 124 I

I

093] 125 >

094 126
095 — 127 o

ASCII Codes

ASCII ASCII
value Character value Character

128 Q 160 z
a

129 u 161 z
I

130 z
e 162 0

131 a 163 z
u

132 a 164 n

133 a 165 N

134 0

a 166 a

135 9 167 0

136 ? 168 c
137 e 169 i

138 e 170 I

139 7 171 v /2

140 i 172 %
141 %

I 173 I

142 A 174 «
143 A 175 »
144 E 176
145 SB 177 • • • •

146 178
147 0 179
148 0 180
149 0 181 =l

150 u 182 HI

151 u 183 n
152 y 184 =1
153 0 185 _JI

154 u 186 II

155 187 =il

156 £ 188
157 ¥ 189 _u

158 Pt 190 —J
159 191 —1

A-6

ASCII Codes

ASCII
value

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Character
L

ASCII
value

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Character
a

(3
r

7T

z

CT

M

T

0

Q
6

00

f
n

+

r

j

4
n

2

■
(blank 'FF')

ASCII Codes

EXTENDED CODES

Second Code Meaning
(decimal)
3
15
16-25
30-38
44-50
59-68

(null character) NULL
(shift tab)
ALT- Q,W,E,R,T,Y,U,I,O,P
ALT- A,S,D,F,G,H,J,K,L
ALT- Z,X,C,V,B,N,M
function keys Fl through F10
(when disabled as soft keys)

71
72
73
75
77
79
80
81
82
83
84-93
94-103
104-113
114
115
116
117
118
119
120-131
132

HOME
Cursor Up
PGUP
Cursor Left
Cursor Right
END
Cursor Down
PGDN
INS
DEL
F11-F20 (SHIFT- Fl through F10)
F21-F30 (CTRL- Fl through F10)
F31-F40 (ALT- Fl through F10)
CTRL-PRTSC
CTRL-Cursor Left (Previous Word)
CTRL-Cursor Right (Next Word)
CTRL-END
CTRL-PGDN
CTRL-HOME
ALT- 1,2,3,4,5,6,7,8,9,0,-,=
CTRL-PGUP

ASCII Codes

EXTENDED CODES

An extended code is returned by the INKEY$
system function for certain keys or key
combinations that cannot be represented in
standard ASCII code. A null character (ASCII
code 00) is returned as the first character of a
two-character string. If a two-character string
is received by INKEY$, then you should go
back and examine the second character to
determine the actual key pressed. Usually, but
not always, this second code is the scan code
of the primary key that was pressed. The
ASCII codes (in decimal) for this second
character, and the associated key(s) are listed
below.

HEXADECIMAL CONVERSION
TABLES

BYTE BYTE

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

A-10

BINARY TO HEXADECIMAL
CONVERSION TABLE

The following table shows the decimal (base
10), binary (base 2), and hex (base 16) repres
entations for the numbers 0 to 16.

DECIMAL BINARY HEX

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 mi F
16 10000 10

Mathematical Functions

DERIVED FUNCTIONS

You can define a derived function in your
program by use of a DEF FN statement to
avoid coding the formula each time you need
it.

Functions that are not intrinsic to GW-BASIC
may be calculated as follows.

HYPERBOLIC TANGENT TANH(x)=(EXP(x)-EXP(-x))/(EXP(x)+EXP(-x))

Function GW-BASIC Equivalent

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

SEC(x)=l/COS(x) when xOl.570796
CSC(x)=l/SIN(x) when xOO
COT(x)=l/TAN(x) when xOO
ARCSIN(x)=ATN(x/SQR(l-x*x))
ARCCOS(x)=1.570796-ATN(x/SQR(l-x*x)) when
ABS(xKl

INVERSE SECANT ARCSEC(x)=ATN(SQR(x*x-l)) +SGN(SGN(x)-
1)*1. 570796 when ABS(x)>l

INVERSE COSECANT ARCCSC(x)=ATN(l/SQR(x*x-l)) when
ABS(x)>l +(SGN(x)-l)*L 570796

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE

ARCCOT(x)=l.570796- ATN(x)
SINH(x)=(EXP(x)-EXP(-x))/2
COSH(x)=(EXP(x)+EXP(-x))/2

HYPERBOLIC SECANT
HYPERBOLIC
COSECANT

HYPERBOLIC
COTANGENT

SECH(x)=2/(EXP(x)+EXP(-x))

CSCH(x)=2/(EXP(x)-EXP(-x)) when xOO

COTH(x)=(EXP(x)+EXP(-x))/(EXP(x)-EXP(-x))
when x<>0

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

ARCSINH(x)=LOG(x+SQR(x*x+l))

ARCCOSH(x)=LOG(x+SQR(x*x-l)) when x>l

ARCTANH(x)=LOG((l+x)/(l-x))/2 when
ABS(xKl

A-12

Mathematical Functions

DERIVED FUNCTIONS

GW-BASIC EquivalentFunction

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

ARCSECH(x)=LOG((SQR(l-x*x)+l)/x) when
(Xx<=l

ARCCSCH(x)=LOG((SGN(x)*SQR(x*x+l)+l/x)
when x>0

ARCCOTH(X)—LOG((X+l)/(X-l))/2 when
ABS(x)>l

LOGARITHM TO BASE ‘a’ LOGA(x)—LOG(x)/LOG(a) when a>0 and x>0

Note Both ‘x’ and ‘a’ can be any numeric
constant, variable, array element, function or
expression. Any values of ‘x’ or ‘a’ that would
cause error messages are noted.

A-13

Programming
in GW BASIC

General

• Syntax Conventions
• Line Format

• Character Set

• Reserved Words

General

SYNTAX CONVENTIONS

• Uppercase letters and words, and the symbols
listed below, should be typed in the actual line
exactly as shown.

(),;: = / #$-

In the statement:

WRITE # filenum, list-of-expressions

and the comma (,) after filenum should be
typed as shown.

• Lowercase letters and words represent
variable information (or parameters) that the
user must provide. In the statement:

KILL filespec

filespec should be replaced by a specific
value—for example, “MYFILE”.

• The symbols listed below are used to define the
syntax of a line, but should not be typed in the
actual line:

vertical stroke indicates alternatives

{ {braces indicate a choice

f j brackets indicate optional parameters

••• ellipsis indicates repetition

underscore joins parts of names in a
multiple-word parameter

B-2

General

• Braces group related items (divided by a
vertical stroke), such as alternatives.

{A|B|C}

indicates that you must choose one of the
items enclosed within the braces.

A or B or C

• Brackets also group related items (divided by a
vertical stroke); however, everything within
the brackets is optional and may be omitted.

indicates that you may choose one of the items
enclosed within the brackets or that you may
omit all of the items.

• An ellipsis indicates that the preceding item or
group of items may be repeated more than
once in succession.

A [,B]...

indicates that A can be typed alone or can be
followed by

,B

once or more in succession.

General

Note

A [,list_of_B]

is also permitted and has the same meaning
as

A [,B]...

• The underscore character () can be used to
join names in a multiple-word parameter. For
example:

ENVIRONS (nth parmJ

• Characters which appear in a listing in bold
face represent characters entered through the
keyboard.

B-4

General

LINE FORMAT

GW BASIC lines may contain a maximum of
255 characters and have the following format:

[nnnnn] statement [/statement]...[’comment]
CR

A GW BASIC program line always begins
with a line number (an unsigned integer in the
range 0 to 65,529), and ends with a carriage
return (CR). A program line is stored in
memory as soon as you enter CR.

A GW BASIC immediate line, i.e., a line that is
executed as soon as you enter it, always begins
with a letter, as you have to omit the line
number in this case.

More than one GW BASIC statement may be
placed on a line, but each successive statement
must be separated from the last by a colon.

At the end of a GW BASIC line (before CR)
you may enter a comment string preceded by a
single quotation mark (’).

A comment string preceded either by the
keyword REM or by a single quotation mark
may also be written just after the line number.

You can extend a logical line over more than
one physical line by pressing CTRL-CR or by
continuing typing and letting the logical line
wrap around to the next physical line.

All GW BASIC lines shown in this manual
end with CR unless specifically stated
otherwise.

B-5

General

Examples

10FORK = 1 TO 20

is a GW BASIC program line

100 GOSUB 1000 ‘branch to SUB1

is a GW BASIC program line with a comment
at the end

1000‘SUB1

is a GW BASIC program line which contains
only a comment

PRINT AS

is a GW BASIC immediate line.

• Every GW BASIC program line begins with
a line number. Line numbers indicate the
order in which the program lines are stored in
memory. Line numbers are also used as
references in branching and editing.

For the EDIT, LIST, AUTO, and DELETE
commands, a period (.) may be used to
reference the current line.

B-6

General

CHARACTER SET

GW BASIC recognizes upper and lower case
letters of the alphabet, the digits 0 through 9,
and the following special characters.

Blank
= Equals sign or assignment symbol
+ Plus sign
- Minus sign
* Asterisk or multiplication symbol
/ Slash or division symbol

Up arrow or exponentiation symbol
(Left parenthesis
) Right parenthesis
% Percent sign or integer type declaration

character
Number (or pound) sign or double

precision type declaration
$ Dollar sign or string type declaration

character
! Exclamation point or single precision

type declaration character
Left bracket (*)

] Right bracket (*)
, Comma
. Period or decimal point

Single quotation mark (apostrophe)
Double quotation mark (string delimiter)

; Semicolon
: Colon & Ampersand
? Question mark (PRINT abbreviation)
< Less than
> Greater than
\ Backslash or integer division symbol
@ At sign
__Underscore (*)

Vertical line or pipe
{ Left brace
} Right brace

Grave accent
~ Tilde

(*) Since these symbols are not used as
operators in the language, they may be used to
define the syntax (see Syntax Conventions
above). They should be typed in the actual line
only if they belong to a string constant.

B-7

General

RESERVED WORDS

GW BASIC comprises a set of statements,
commands, function names, and operator
names which are treated as reserved words,
and which cannot be used as variable names.
The total list of GW BASIC reserved words is
as follows:

ABS EQV LSET
AND ERASE MERGE
ASC ERDEV MID$
ATN ERDEV$ MKDIR
AUTO ERL MKD$
BEEP ERR MKI$
BLOAD ERROR MKS$
BSAVE EXP MOD
CALL FIELD NAME
CALLS FILES NEW
CHAIN FN NEXT
CHDIR FIX NOT
CHR$ FOR OCT$
CINT FRE OFF
CIRCLE GET ON
CLEAR GOSUB OPEN
CLOSE GOTO OPTION
CLS HEX$ OR
COLOR IF OUT
COM IMP PAINT
COMMON INKEY$ PEEK
CONT INP PLAY
COS INPUT PMAP
CSNG INPUT# POINT
CSRLIN INPUT$ POKE
CVD INSTR POS
CVI INT PRESET
CVS IOCTL PRINT
DATA IOCTL$ PRINT#
DATE$ KEY PSET
DEF KILL PUT
DEFDBL LEFT$ RANDOMIZE
DEFINT LEN READ
DEFSNG LET REM
DEFSTR LINE RENUM
DELETE LIST RESET
DIM LLIST RESTORE

B-8

General

DRAW LOAD RESUME
EDIT LOC RETURN
ELSE LOCATE RIGHTS
END LOF RMDIR
ENVIRON LOG RND
ENVIRONS LPOS RSET
EOF LPRINT
RUN STRING USR
SAVE STRINGS VAL
SCREEN SWAP VARPTR
SGN SYSTEM VARPTRS
SHELL TAB VIEW
SIN TAN WAIT
SOUND THEN WEND
SPACES TIMER WHILE
SPC TIMES WIDTH
SQR TO WINDOW
STEP TROFF WRITE
STICK
STOP TRON WRITE#
STR$ USING XOR

B-9

Advanced
Features

• Assembly Language Routines

• Event Trapping

Advanced Features

ASSEMBLY LANGUAGE ROUTINES

Memory space must be set aside for an
assembly language subroutine before it can be
loaded. To do so, use the /M: option on the
GW BASIC command (refer to the GW BASIC
command in the Reference section). The /M:
option sets the highest memory location to be
used by GW BASIC.

In addition to the GW BASIC code area,
GW BASIC uses up to 64K of memory
beginning at its data (DS) segment.

If extra stack space is needed when an
assembly language subroutine is called, you
can save the GW BASIC stack and set up a
new stack for use by the assembly language
subroutine. The GW BASIC stack must be
restored, however, before you return from the
subroutine.

The assembly language subroutine can be
loaded into memory in several ways, the most
simple being to use the BLOAD command (see
the BLOAD Command in the Reference
section). Also, you could execute a program
that exits but stays resident, and then run
GW BASIC. As a third choice, the assembled
instructions could be stored in DATA
statements and POKEd directly into memory.

C-2

Advanced Features

The following guidelines must be observed if
you choose to BLOAD, or read and poke, an
EXE file into memory:

• Make sure the subroutines do not contain any
long references, address offsets that exceed
64K or that take the user out of the code
segment. These long references require
handling by the EXE loader.

• Skip over the first 512 bytes (the header) of the
linkers output file (EXE), then read in the rest
of the file.

C-3

Advanced Features

INTERNAL
REPRESENTATION

The following section describes the internal
representation of numbers in GW BASIC.

Single Precision - 24 bit mantissa

I 0 | 1 | 2 | 3 |

loman | | S|himan| exp

where loman = the low mantissa
S = the sign
himan = the high mantissa
exp = the exponent
man = himan:...:loman

• If exp=0, then numbered

Advanced Features

• If exp <> 0, then the mantissa is normalized
and

number = sgn * .1 man * 2 ** (exp -80h)

That is, in single precision (hex notation -
bytes low to high)

00000080 = \.5
00008080 = -.5

Double Precision - 56 bit mantissa
|0|l|2|3|4|5| 6 | 7 |

loman | | | | | | S|himan| exp

C-5

Advanced Features

CALLING SUBROUTINES

CALL STATEMENT

The CALL statement is the recommended way
of calling machine language programs with
GW BASIC. It is preferable to the USR
function unless you are running programs
that already contain USR functions.

The syntax of the CALL statement is:

Syntax CALL numvar [(variable [,variable]...)]

numvar contains the offset into the current segment that is the
starting point in memory of the subroutine being called. The
list of variables indicates variables or constants, separated
by commas, that are to be passed to the subroutine as
arguments. The current segment is either the default, or that
which has been defined by a DEF SEG statement.

C-6

Advanced Features

Invoking the CALL statement causes the
following to occur:

• For each variable specified in the statement,
the two-byte offset of the variable’s location
within the GW BASIC segment is pushed onto
the stack.

• The GW BASIC return address code segment
(CS) and offset (IP) are pushed onto the Stack.

• Control is transferred to the machine
language routine using the segment address,
which is given in the last DEF SEG statement
and the offset given in numvar

C-7

Advanced Features

The following diagrams illustrate the state of
the stack at the time the CALL statement is
executed and the condition of the stack during
execution of the called subroutine,
respectively.

high argument 0 SP+4+(2#n)
addresses • Each argument is a 2-byte

• pointer into memory
t

c
•

S 0 argument n-1
t u SP+6
a n argument n
c t SP+4
k e return segment address

r SP+2
I return offset

SP stack pointer
low (SP register

addresses contents)

Stack Layout When CALL Statement is Activated

After the CALL statement has been activated,
the subroutine has control. Arguments may be
referenced by moving the stack pointer (SP) to
the base pointer (BP) and adding a positive
offset to BP.

C-8

Advanced Features

high
address argument 0

argument 1 *-
Absent if any argument is
referenced within a nested

t procedure
c

s o argument n
t u
an —
c t return segment address Absent in local procedure
k e

r return offset
1 stack pointer

(SP register
local variables contents)
(data pushed on
stack)

This space may be
used during pro
cedure execution

I
Stack pointer may change
during procedure
execution

low
addresses

Stack Layout During Execution of a CALL Statement

C-9

Advanced Features

Observe the following rules when coding a
subroutine:

• The called routine must preserve segment
registers DS, ES, SS, and BP. If interrupts are
disabled in the routine, they must be enabled
before exiting. The stack must be cleaned up
on exit.

• The called program must know the number
and length of the arguments passed. The
following routine shows an easy way to
reference arguments:

push BP
mov BP,SP
add BP, (2*number of arguments)+4

Then:
argument 0 is at BP
argument 1 is at BP-2
argument n is at BP-2*n
(number of arguments=n+l)

• Variables may be allocated either in the Code
Segment or on the stack. Be careful not to
modify the return segment and offset stored on
the stack.

C-10

Advanced Features

• The called subroutine must clean up the stack.
A preferred way to do this is to perform a RET
n statement (where n is two times the number
of arguments in the argument list) to adjust
the stack to the start of the calling sequence.

• Values are returned to GW BASIC by
including in the argument list the name of the
variable that will receive the result.

• If the argument is a string, the argument’s
offset points to 3 bytes which, as a unit, are
called the string descriptor. Byte 0 of the
string descriptor contains the length of the
string (0 to 255). Bytes 1 and 2, respectively,
are the lower and upper 8 bits of the string
starting address in string space.

C-ll

Advanced Features

If the argument is a string literal in the
program, the string descriptor will point to
program text. Be careful not to alter or destroy
your program this way. To avoid
unpredictable results, Concatenate a null
string to the string literal in the program. For
example, use:

20 A$=“BASIC”+“ ”

This will force the string literal to be copied
into string space. Then the string may be
modified without affecting the program.

• The contents of a string may be altered by
user routines, but the descriptor must not be
changed. Do not write past the end-of-string.
GW BASIC cannot correctly manipulate
strings if their lengths are modified by
external routines.

• Data areas needed by the routine must be
allocated either in the CODE segment of the
user routine or on the stack. It is not possible
to declare a separate data area in the user
assembler routine.

C-12

Advanced Features

Example 100 DEFSEG&H8000
110 FOO=&H7FA
120 CALL FOO (A,B$,C)

Line 100 sets the segment to 8000 Hex. The
value of variable FOO is added into the
address as the low word after the DEF SEG
value is left shifted 4 bits, i.e. multiplied by 16.
(This is a function of the microprocessor, not
of GW-BASIC.) Here, FOO is set to &H7FA, so
that the call to FOO will execute the
subroutine at location 8000:7FA Hex (absolute
address 8007FA Hex).

C-13

Advanced Features

The following sequence in 8086 assembly
language demonstrates access to the
arguments passed. The returned result is
stored in the variable C.

PUSH
MOV
ADD
MOV
MOV
MOV

BP
BP,SP
bp,(4+2-::-3)
BX,[BP-21
CLJBXl
DX.HBXl

;Set up pointer

;Get address of B$
;Get length of B$
;Get addr of B$ text

■

MOV SIJBPJ
MOV DHBP-41
MOVS WORD
POP BP
RET 6

;Get address of ‘A’
;Get pointer to *C ’
;Store variable ‘A’
;Restore pointer.
;Restore stack

C-14

Advanced Features

Note
The called program must know the variable
type for the numeric arguments passed. In the
previous example, the instruction:

MOVS WORD

will copy only two bytes. This is fine if
variables A and C are integer. You would have
to copy four bytes if the variables were single
precision format and copy 8 bytes if they were
double precision.

CALLS STATEMENT

The CALLS statement should be used to
access subroutines that were written using
MS-FORTRAN calling conventions. CALLS
works just like CALL, except that with CALLS
the arguments are passed as segmented
addresses, rather than as unsegmented
addresses.

C-15

Advanced Features

Because MS-FORTRAN routines need to know
the segment value for each argument passed,
the segment is pushed and then the offset is
also pushed. For each argument, four bytes are
pushed rather than 2, as in the CALL
statement. Therefore, if your assembler routine
uses the CALLS statement, n in the RET
statement is two times the number of
arguments + 2.

USR FUNCTION

Although using the CALL statement is the
recommended way of calling assembly
language routines, the USR function is also
available for this purpose. This ensures
compatibility with older programs that
contain USR functions.

The format of the USR function is:

Syntax USR [n] (argument)

n is a digit from 0 to 9. It specifies which user routine is being
called. If n is omitted, USRO is assumed.

argument is any numeric or string expression.

C-16

Advanced Features

A DEF SEG statement must be executed prior
to a USR function call to ensure that the code
segment points to the subroutine being called.
The segment address given in the DEF SEG
statement determines the starting segment of
the subroutine.

For each USR function, a corresponding DEF
USR statement must be executed to define the
USR function call offset. This offset and the
currently active DEF SEG address determine
the starting address of the subroutine.

When the USR function call is made, register
AL contains a value that specifies the type of
x argument that was given. The value in AL
may be one of the following:

2
3
4
8

Two-byte integer (two’s complement)
String
Single precision floating-point number
Double precision floating-point number

C-17

Advanced Features

If the argument is a number, the BX register
points to the Floating-Point Accumulator
(FAC) where the argument is stored.

If the argument is an integer:

FAC-2 contains the upper 8 bits of the
argument.
FAC-3 contains the lower 8 bits of the
argument.

If the argument is a single precision floating
point number:

FAC-2 contains the middle 8 bits of mantissa.
FAC-3 contains the lowest 8 bits of mantissa.

C-18

Advanced Features

If the argument is a double precision floating
point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the argument is a string, the DX register
points to 3 bytes which, as a unit, are called
the string descriptor. Byte 0 of the string
descriptor contains the length of the string (0
to 255 characters). Bytes 1 and 2, respectively,
are the lower and upper 8 bits of the string
starting address in the GW BASIC data
segment. If the argument is a string literal in
the program, the string descriptor will point to
program text. Be careful not to alter or destroy
the program this way.

Usually, the value returned by a USR function
is the same type (integer, string, single
precision, or double precision) as the argument
that was passed to it.

C-19

Advanced Features

GW BASIC has extended the USR function
interface to allow calls to MAKINT and
FRCINT. This allows access to these routines
without giving their absolute addresses. The
address ES:BP is used as an indirect far
pointer to the routines FRCINT and MAKINT.

To call FRCINT from a USR routine use

CALL DWORD ES:IBP1

To call MAKINT from a USR routine use

CALL DWORD ES:IBP+41

C-20

Advanced Features

Example 110 DEFUSR0=&H8000
115 ‘Assumes user gave/M:32767
120 X=5
130 Y USRO(X)
140 PRINT Y

The type (numeric or string) of the variable
receiving the function call must be consistent
with that of the argument passed.

C-21

Advanced Features

EVENT TRAPPING

Event trapping allows a program to transfer
control to a specific program line when a
certain event occurs. Control is transferred as
if a GOSUB statement had been executed to
the trap routine starting at the specified line
number. The trap routine, after servicing the
event, executes a RETURN statement that
causes the program to resume execution at the
place where it was when the event trap
occurred.

The events that can be trapped are receipt of
characters from a communication port (ON
COM (n) GOSUB), detection of certain
keystrokes (ON KEY (n) GOSUB), time
passage (ON TIMER (n) GOSUB), or
emptying of the background music queue (ON
PLAY (n) GOSUB).

C-22

Advanced Features

Event trapping is controlled by the following
statements:

Syntax 1 (to turn on trapping)

{COM (n) | KEY (n) | TIMER (n) | PLAY (n)}
ON

Syntax 2 (to turn off trapping)

{COM (n) | KEY (n) | TIMER (n) | PLAY (n)J
OFF

Syntax 3 (to temporarily turn off trapping)

{COM (n) | TIMER (n) | PLAY (n)} STOP

C-23

Advanced Features

Remarks

COM (n)

KEY (n)

where n is the number (1 through 4) of the
communications channel.

Typically, the COM trap routine will read an
entire message from the COM port before
returning. We do not recommend using the
COM trap for single character messages
because at high baud rates the overhead of
trapping and reading for each character may
allow the interrupt buffer for COM to overflow.

where n is a trappable key number. Trappable
keys are numbered 1 through 20.

Note that KEY(n) ON is not the same
statement as KEY ON. KEY(n) ON sets an
event trap for the specified key. KEY ON
displays the values of all the function keys on
the twenty-fifth line of the screen.

When GW BASIC is in direct mode function
keys maintain their standard meanings.

When a key is trapped, that occurrence of the
key is destroyed. Therefore, you cannot
subsequently use the INPUT or INKEY$
statements to find out which key caused the
trap. So if you wish to assign different
functions to particular keys, you must set up a
different subroutine for each key, rather than
assigning the various functions within a
single subroutine.

C-24

Advanced Features

TIMER

PLAY

The ON TIMER(n) GOSUB statement (where
n is a numeric expression representing a
number of seconds since the previous
midnight) can be used to perform background
tasks at defined intervals.

The ON PLAY(n) GOSUB statement (where n
is a number of notes left in the music buffer) is
used to retrieve more notes from the
background music queue, to permit continuous
background music during program execution.

C-25

Advanced Features

THE ON GOSUB STATEMENT

The ON GOSUB statement sets up a line
number for the specified event trap. The
format is:

ON {COM(n) | KEY(n) | TIMER(n) |
PLAY(n)} GOSUB linenum

C-26

Advanced Features

A linenum of zero disables trapping for that
event.

When an event is ON and if a non-zero line
number has been specified in the ON GOSUB
statement, every time GW BASIC starts a new
statement it will check to see if the specified
event has occurred (e.g., a COM character has
come in). When an event is OFF, no trapping
takes place, and the event is not remembered
even if it takes place.

When an event is STOPped, no trapping takes
place, but the occurrence of that event is
remembered so that an immediate trap will
take place when the associated event ON
statement is executed.

When a trap is made for a particular event, the
trap automatically causes a STOP on that
event, so recursive traps can never occur. A
return from the trap routine automatically
executes an ON statement unless an explicit
OFF has been performed inside the trap
routine.

Note that once an error trap takes place, all
trapping is automatically disabled. In
addition, event trapping will never occur when
GW BASIC is not executing a program.

C-27

Advanced Features

THE RETURN STATEMENT

When an event trap is in effect, a GOSUB
statement will be executed as soon as the
specified event occurs. For example, the
statement:

ON KEYC1O) GOSUB 1OOO

specifies that the program go to line 1000 as
soon as Function Key F10 is pressed. If a
simple RETURN statement is executed at the
end of this subroutine, program control will
return to the statement following the one
where the trap occurred. When the RETURN
statement is executed, its corresponding
GOSUB return address is cancelled.

GW BASIC includes the RETURN linenum
enhancement, which lets processing resume at
a definable line. Normally, the program
returns to the statement immediately
following the GOSUB statement when the
RETURN statement is encountered. However,
RETURN linenum enables you to specify
another line. If not used with care, however,
this capability may cause problems. Assume,
for example, that your program contains:

C-28

Advanced Features

10 ON KEY(10) GOSUB 1000
20 FOR 1 = 1 TO 10
30 PRINT I
40 NEXT I
50 REM NEXT PROGRAM LINE
200 REM PROGRAM RESUMES HERE
1000 FIRST LINE OF SUBROUTINE
1050 RETURN 200

If the Function Key F10 is pressed while the
FOR/NEXT loop is executing, the subroutine
will be performed, but program control will
return to line 200 instead of completing the
FOR/NEXT loop. The original GOSUB entry
will be cancelled by the RETURN statement,
and any other GOSUB, WHILE, or FOR, that
was active at the time of the trap will remain
active. The current FOR context will also
remain active, and a FOR without NEXT error
may result.

C-29

Conversion of
Programs to

GW BASIC

Converting Programs

INTRODUCTION

GW BASIC bears a similarity to many
BASICs. Your personal computer will support
programs written for an extensive variety of
microcomputers. For programs written in a
BASIC other than GW BASIC, some minor
adjustments may be necessary before running
them. This appendix highlights some specific
areas to examine when converting programs.

D-2

Converting Programs

STRING DIMENSIONING

LENGTH OF STRINGS

GW BASIC strings are of variable lengths.
Therefore, all statements that declare the
length of strings should be deleted. For
example, in a statement which dimensions a
string array for ‘J’ elements of lengths T such
as:

DIM A$(I,J]

the conversion for GW BASIC would be:

DIM AS(J)

D-3

Converting Programs

SUBSTRINGS

In GW BASIC the following functions are used
to take substrings of strings:

LEFTS
MIDS
RIGHTS

Other forms, such as:

A$(ll (to access the Ith character in A$) or,
A$(I,J) (to take a substring of A$ from
position I to J) should be changed as follows:

Other BASICS GW BASIC

X$=A$(I) = X$=MID$(A$,IJ1)
X$=A$(I,J) = X$=MID$(A$,I,J-I+1)

If the substring reference is on the left side of
an assignment and X$ is used to replace
characters in A$, then the conversion should
be carried out as follows:

Other BASICs GW BASIC

A$(I)=X$ = MID$(A$,I,1)=X$
A$(I,J)=X$ = MID$(A$, I, J-I+1)=X$

Converting Programs

CONCATENATION

GW BASIC uses a plus (+) sign to denote
string concatenation. Other Basics use a
comma (,) or an ampersand (&) which should
be altered accordingly.

D-5

Converting Programs

MAT FUNCTIONS

Any programs which use the MAT function
(available in some Basics) must be rewritten
incorporating FOR...NEXT loops before they
will run properly.

D-6

Converting Programs

MULTIPLE
ASSIGNMENTS

Some BASICs allow the following syntax:

10 LET D=E=O

to set D and E equal to zero. GW BASIC
interprets the second equal sign as a logical
operator and sets D equal to -1 if E was equal
to 0. This statement should therefore be
broken up into two assignment statements as
follows:

10 D=O:E=O

Converting Programs

MULTIPLE
STATEMENTS

Multiple statements on a GW BASIC line must
always be separated by colons (:), unlike some
other BASICs which use a backslash (\)
instead.

D-8

Converting Programs

PEEKs AND POKEs

The execution of programs containing PEEK
and POKE instructions may vary from
machine to machine. It is therefore necessary
to analyze the purpose of these instructions in
other BASIC programs before translating the
same functions into GW BASIC.

D-9

Converting Programs

IF...THEN...[ELSE...]

Not all BASICs program the optional ELSE
clause which is performed in the event of a test
proving false.

For example, a BASIC program may
originally be:

10
IF D E THEN 30
20 PRINT “NOT EQUAL’’ : GOTO 40
30 PRINT “EQUAL’’
40 REM CONTINUE

The above statement sequence will work
correctly, but it may be optimized in GW
BASIC as follows:

10 IF D=E THEN PRINT “EQUAL”
ELSE PRINT “NOT EQUAL”

20 REM CONTINUE

D-10

Converting Programs

FILE I/O

In GW BASIC, the reading and writing of
information to and from a disk file is achieved
by opening the file to associate it with a
particular file number, then, selecting
particular I/O statements that specify that file
number. In some other BASICs, the I/O to
disk is somewhat different. Refer to Chapter 4,
“Disk File Handling” and to the Reference
section under the OPEN statement, for fuller
descriptions.

D-ll

Converting Programs

GRAPHICS

Drawing an image on the screen can vary
from BASIC to BASIC. Refer to Chapter 5
“Graphics” and the Reference section for a
description of the available graphic
statements.

D-12

Converting Programs

SOUNDING THE BELL

The PRINT CHR$(7) is required for some
BASICs to send an ASCII bell character.
Under GW BASIC the BEEP, SOUND and
PLAY statements can also be used to sound
the bell.

D-13

Error Codes
and Error
Messages

Error Codes

ERROR MESSAGES
■

NUMBER MESSAGE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
22
23
24
25
26
27
29
30
50
51
52

NEXT without FOR
Syntax error
RETURN without GOSUB
Out of data
Illegal function call
Overflow
Out of memory
Undefined line number
Subscript out of range
Duplicate Definition
Division by zero
Illegal direct
Type mismatch
Out of string space
String too long
String formula too complex
Can’t continue
Undefined user function
No RESUME
RESUME without error
Missing operand
Line buffer overflow
Device Timeout
Device Fault
FOR without NEXT
Out of paper
WHILE without WEND
WEND without WHILE
FIELD overflow
Internal error
Bad file number

E-2

Error Codes

ERROR MESSAGES

NUMBER MESSAGE

53
54
55
57
58
61
62
63
64
66
67
68
69
70
71
72
74
75
76

File not found
Bad file mode
File already open
Device I/O error
File already exists
Disk full
Input past end
Bad record number
Bad file name
Direct statement in file
Too many files
Device unavailable
Communication buffer overflow
Disk Write Protected
Disk not ready
Disk media error
Rename across disks
Path/file access error
Path not found

E-3

Error Codes

CODE NUMBER MESSAGE

NF 1 NEXT without FOR
A NEXT statement has been encountered
without a matching FOR

SN 2 Syntax error
A line is encountered which includes an
incorrect sequence of characters (misspelled
keyword, incorrect punctuation, etc.).
GW BASIC automatically enters edit
mode at the line that caused the error.

RG 3 RETURN without GOSUB
A RETURN statement is encountered for
which there is no previous, unmatched
GOSUB statement.

OD 4 Out of data
A READ statement is executed when
there are no DATA statements with
unread data remaining in the program.

FC 5 Illegal function call
A parameter that is out of range is passed
to a numeric or string function. This FC
error may also occur as the result of:

1. A negative or unreasonably large
subscript.

2. A negative or zero argument with
LOG.

3. A negative argument to SQR.
4. A negative mantissa with a noninteger

exponent.
5. A call to a USR function for which

the starting address has not yet
been given.

6. An improper argument to MID$,
LEFT$, RIGHTS, INP, OUT, WAIT,
PEEK, POKE, TAB, SPC, STRINGS,
SPACES, INSTR, or ON...GOTO.

E-4

Error Codes

expression; or, the value zero has been
raised to a negative power. In the former
case, the result is machine infinity (with
the appropriate sign); in the latter case,
the result is positive machine infinity.

CODE NUMBER MESSAGE

ov 6 Overflow
The result of a calculation is too large to
be represented in GW BASIC number
format. If underflow occurs, the result is
zero and execution continues without an
error.

OM 7 Out of memory
A program is too big, or has too many
loops, subroutines, variables; or has
expressions that are too complicated to
evaluate

UL 8 Undefined line number
A nonexistent line is referenced in a
GOTO, GOSUB, IF...THEN...ELSE, or
DELETE statement.

BS 9 Subscript out of range
An array element is referenced either
with a subscript that is outside the
dimensions of the array or with the wrong
number of subscripts.

DD 10 Duplicate Definition
Two DIM statements are given for the
same array; or a DIM statement is given
for an array after the default dimension
of 10 has been established for that array;
or an OPTION BASE is given after an
array has been dimensioned.

/O 11 Division by zero
A division by zero is encountered in an

E-5

Error Codes

CODE NUMBER MESSAGE

ID 12 Illegal direct
A statement that is illegal in direct mode
is entered as a direct mode command.

TM 13 Type mismatch
A string variable name is assigned a
numeric value or vice versa; a function
that expects a numeric argument is given
a string argument or vice versa.

OS 14 Out of string space
String variables have caused GW BASIC
to exceed the amount of free memory
remaining. GW BASIC will allocate string
space dynamically, until it runs out
memory.

LS 15 String too long
An attempt is made to create a string in
excess of 255 characters.

ST 16 String formula too complex
A string expression is too long or too
complex to be processed. It should be
broken into smaller expressions.

CN 17 Can’t continue
An attempt is made to continue a program
that:
1. Has halted due to an error.
2. Has been modified during a break in

execution.
3. Does not exist.

UF 18 Undefined user function
A USR function is called before the
function definition (DEF statement) is
given.

E-6

Error Codes

CODE NUMBER MESSAGE

19 No RESUME
An error handling routine is entered but
contains no RESUME statement.

20 RESUME without error
A RESUME statement is encountered
before an error handling routine is
entered.

22 Missing operand
An expression contains an operator with
no operand following it.

23 Line buffer overflow
An attempt has been made to input a line
that has too many characters.

24 Device Timeout
GW BASIC did not receive information
from an 1/O device within a predetermined
amount of time.

25 Device Fault
In GW BASIC, will only occur when a
fault status is returned from the Line
Printer interface. Usually indicates a
hardware error in the printer or interface
card.

26 FOR without NEXT
A FOR statement was encountered
without a matching NEXT.

27 Out of paper
The printer is out of paper or is not
switched on. Insert paper, ensure power
is switched on and continue.

E-7

Error Codes

CODE NUMBER MESSAGE

29 WHILE without WEND
A WHILE statement does not have a
matching WEND.

30 WEND without WHILE
A WEND statement was encountered
without a matching WHILE.

50 FIELD overflow
A FIELD statement is attempting to
allocate more bytes than were specified
for the record length of a random file.

51 Internal error
An internal malfunction has occurred in
GW BASIC. Report to Olivetti the
conditions under which the message
appeared.

52 Bad file number
A statement or command references a
file with a file number that is not OPEN
or is out of the range of file numbers spec
ified at initialization.

53 File not found
A LOAD, KILL, or OPEN statement ref
erences a file that does not exist on the
current disk.

54 Bad file mode
An attempt is made to use PUT, GET, or
LOF with a sequential file, to LOAD a
random file, or to execute an OPEN
statement with a file mode other than I,
0, or R.

55 File already open
A sequential output mode OPEN
statement is issued for a file that is
already open; or a KILL statement is
given for a file that is open.

E-8

Error Codes

CODE NUMBER MESSAGE

57 Device I/O Error
An I/O error occurred on a peripheral
device I/O operation. It is a fatal error;
i.e., the operating system cannot recover
from the error.

58 File already exists
The filename specified in a NAME
statement is identical to a filename
already in use on the disk.

61 Disk full
All disk storage space is in use.

62 Input past end
An INPUT statement is executed after
all the data in the file has been INPUT,
or for a null (empty) file. To avoid this
error, use the EOF function to detect the
end-of-file.

63 Bad record number
In a PUT or GET statement, the record
number is either greater than the
maximum allowed (32,767) or equal to
zero.

64 Bad file name
An illegal form is used for the filename
with a LOAD, SAVE, KILL, or OPEN
statement (e.g., a filename with too many
characters).

66 Direct statement in file
A direct statement is encountered while
LOADing an ASCII-format file. The
LOAD is terminated.

67 Too many files
An attempt is made to create a new file
(using SAVE or OPEN) when all 255
directory entries are full.

E-9

Error Codes

CODE NUMBER MESSAGE

68 Device unavailable
An attempt was made to open a file to a
non-existent device. It may be that
hardware did not exist to support the
device, such as LPT2: or LPT3:, or was
disabled by the user. This occurs if an
OPEN “C0M1:... statement is executed
after the user has disabled RS232 support
via the /C:0 switch directive on the
command line.

69 Communication buffer overflow
Not enough space has been reserved for
communications I/O. Several options are
available:
1. Increase the size of the COM receive

buffer via the /C: switch.
2. Implement a “hand-shaking” protocol

with the host/satellite such as
XON/XOFF as demonstrated in the
TTY programming example to turn
transmit off long enough to catch
up.

3. Use a lower baud rate for transmit
and receive.

70 Disk Write Protected
This is one of 3 “hard” disk errors returned
from the disk controller. This occurs when
an attempt is made to write to a disk that
is write protected. Use an ON ERROR
GOTO statement to detect this situation
and request user action. Other possible
“hard” disk errors are:

71 Disk not ready
Occurs when the disk drive door is open
or a disk is not in the drive. Again use an
ON ERROR GOTO statement to recover.

E-10

Error Codes

CODE NUMBER MESSAGE

72 Disk media error
Occurs when the FDC controller detects
a hardware or media fault. This usually
indicates damaged media. Copy any
existing files to a new disk and reformat
the damaged disk. FORMAT will flag the
bad tracks and place them in a file “bad-
track.” The remainder of the disk is now
usable.

74 Rename across disks
An attempt was made to rename a file to
a new name that was declared to be on a
disk other than the disk specified for the
old name. The renaming operation is not
performed.

75 Path/file access error
During an OPEN, MKDIR, CHDIlHor
RMDIR operation, MS-DOS was unable
to make a correct P ath to File connection.
The operation is not completed.

76 Path not found
During an OPEN, MKDIR, CHDIR, or
RMDIR operation, MS-DOS was unable
to find the path specified. The operation
is not completed.

E-ll

Glossary

Glossary

GLOSSARY

absolute
coordinate
form

In graphics, specifying the location of a pixel
with respect to the origin of the specified
coordinate system.

access mode A technique that is used to obtain a specific
logical record from, or place a specific logical
record into, a file.

active page The screen buffer which has information
written to it. It may be different from the
visual page whose information is being
displayed.

address Location in storage.

adressable
point

The technique of displaying a sequence of
images so that you can see the objects moving
on the screen (see the GET and PUT graphics
statements).

argument A value that is passed from the main program
to a function or a subroutine.

array A collection of variables of the same type
under one name. You can distinguish them by
the value(s) of one or more subscripts.

Glossary

array
element

An element of an array. It is a variable whose
name coincides with the name of the array
and is followed by one or more subscripts in
parentheses. They specify the position of the
array element within the array.

ASCII American National Standard Code for
Information Interchange. A standard 8 bit
code used for exchanging information among
data processing systems and associated
equipment.

aspect
ratio

Determines the spacing of the horizontal, ratio
vertical, and diagonal points. The standard
aspect ratio of 4/3 indicates that the
horizontal axis of the screen is 4/3 as long as
the vertical axis.

asynchronous A method of transmitting data in which each
transmitted character is preceded by a start
bit and followed by a stop bit, thus permitting
the interval between characters to vary.

backround
color

The color of the area which surrounds the
subject. In particular, the color of the screen
surrounding a character (character
background color) or the color displayed when
a graphics viewport is cleared (graphics
background color).

G-3

Glossary

baud

boolean
value

bps

built-in
function

call

carriage
return

character
definition
tag

The transmission rate which is in effect;
synonymous with signal events (usually bits)
per second.

A numeric value that is interpreted as “true”
value (if it is not zero) or “false” (if it is zero).

Bits per second.

See intrinsic function.

The branching or transfer of control to a
specified subroutine.

A character that causes the print or display
return position to move to the first position on
the next line. Entering CR when you finish
typing a GW BASIC line, passes the line to
GW BASIC for processing.

A special character placed at the end of a
definition variable — It may be: % (integer
variable),! (single-precision variable), #
(double-precision variable), or $ (string
variable).

Glossary

clipping The graphics statements use line clipping, i.e.
lines that cross the screen or viewport are
“clipped” at or cut off at the edges of the
viewing area.

command
level

The GW BASIC is at command level when Ok
appears on the screen, i.e. when it is waiting
for the user to enter an immediate or program
line.

comment A statement used to document a program. In
GW BASIC, a comment may be entered by
REM or a single quote f) followed by the
comment string. The single quote (‘) also
allows the insertion of comments at the end of
a GW BASIC line.

concatenation The operation that joins two strings together.

constant A fixed value or data item. A constant may be
a string or a numeric constant. In the latter
case it may be an integer, a single-precision or
a double-precision number.

coordinates Numbers which identify a location on the
screen. They may be text coordinates to
identify a character or the cursor (expressed in
terms of rows and columns) or graphics
coordinates to identify a pixel (expressed as x
and y Cartesian coordinates).

G-5

Glossary

current
directory

The directory you are working on. You may
change the current directory by the CHDIR
command. Just after formatting a disk the Root
directory is the current directory.

current
line

The line you are working on, or the line you
line have just entered, or the line where an
error has occurred.

current
point

See “last referenced point.”

current
program

The program currently in memory.

current
viewpoint

The viewport you are working on. To change
viewports, you must use a VIEW statement.

cursor A movable marker that is used to indicate a
position on the screen. There are three types of
cursor (see the LOCATE statement in the
Reference section). The shape and blinkrate of
the overwrite and user cursors are
programmable. The user cursor is not visible at
initialization.

debug To locate and correct mistakes in a program.

G-6

Glossary

default Pertaining to a value or option that is assumed
when none is given.

delimeter A character that limits a string of characters
and therefore cannot be part of the string.

destination The variable to the left of the equal sign in an
assignment statement.

direct
access

The ability to read or write information at any
access location within a storage device.

direct line See “immediate line.”

direct mode See “immediate mode.”

directory The directory contains the names of files on
the disk, along with information that tells MS-
DOS where to find each file.

disk Is a generic term to indicate either a hard-disk
or a diskette.

diskette A 5-1/4-inch mini floppy disk.

Glossary

double
precision

This is the maximum precision GW BASIC
can handle. If a number contains more than 7
digits it is a double-precision number.

drive Synonymous with disk drive. May be specified
by A: (first diskette drive), B: (second diskette
drive), C: (hard-disk drive), etc.

dummy
argument

A fictitious parameter in a function or
statement or command. A value must be
entered, but it is ignored by GW BASIC.

edit To enter, modify, or delete a GW BASIC line.

end of file
(EOF)

A “marker” immediately following the last
record of a file. It signals the end of the file.

error
trapping

When an error occurs, the control of the s—
program may be automatically directed to a
specified program line.

event
trapping

When a certain event occurs, the control of the
trapping program may be automatically
directed to a specified program line. Events
include: receipt of characters from a
communication port, detection of certain
keystrokes, time passage, emptying of the
background music queue.

G-8

Glossary

expression An algorithm returning a single numeric value
(numeric, relational or logical expressions) or
a string operation returning a string value
(string expression).

field In a record, a specific area used for a
particular type of data.

file A collection of records. The records of a file
may be accessed by GW BASIC sequentially
(one after the other) or randomly (by record
number).

fixed-
length

Enumerable elements in a file each of which
has the same length. For example, random
files have fixed-length records.

file name Name assigned to a file.

file
specification

Unique file identifier. A file specification can
include a drive specifier (A:,B:,C: etc.).

floppy A diskette.

foreground
color

The color of the character itself (character
foreground color), or the color used to draw
pictures when no color parameter is specified
in a graphics statement (graphics foreground
color).

G-9

Glossary

full duplex A communication system permitting
simultaneous operation in both directions.

function An algorithm returning a single value. A
function can be a user or an intrinsic function.
It can be called forth simply by stating its
name, followed (in parentheses) by one or more
“arguments” representing the values that the
function parameters are to assume.

function key A key to which the user can assign a special
meaning. Typing the key you may generate
any character string. Some function keys may
already be assigned by the system at
initialization.

graphics
viewport

See “viewport.”

GW-BASIC In this manual refers only to Microsoft GW
BASIC version 2.0 as implemented on the
AT&T Personal Computer 6300.

half duplex A communication system permitting operation
in either direction, but not simultaneously.

hard disk A rigid disk. In this manual, referring to a
5-1/4-inch Winchester-type disk.

G-10

Glossary

immediate
line

A GW BASIC line which begins with a letter.
It line is executed as soon as you press CR.

immediate
mode

This mode is used to immediately enter and
execute a GW BASIC line.

indirect
mode

See “program line.”

indirect
mode

See “program mode.”

interrupt The suspension of a process, such as the
execution of a program, caused by an event
external to that process, and performed in
such a way that the process can be resumed.

intrinsic
function

A function that the user may call without
defining it as it is an integral part of GW
BASIC (e.g. SIN(x)).

keyword One of the predefined words of GW BASIC. It
is a reserved word.

last-
referenced
point

In graphics, the last referenced point may be
used for relative coordinates (see the STEP
option in the graphics statement).

Glossary

line A GW BASIC line may begin with a line
number (if it is a program line) or with a letter
(if it is an immediate line). The line may
contain one or more GW BASIC statements or
commands (separated by colons) and may be
up to 255 characters long.

line clipping See “clipping.”

line folding The continuation of a logical line on a
subsequent physical line, so that the line can
be modified by insertion or deletion without
losing any other characters on that line.

loop The repeated execution of a series of
statements for a fixed number of times.

machine
infinity

The largest number that can be represented in
internal format.

mantissa The numeral that is not the exponent in
floating point notation.

matrix See “array.”

MS-DOS Microsoft-Disk Operating System.

G-12

Glossary

nest To embed a subroutine or block of data into a
larger routine or block of data.

null A string with zero length, i.e. with no
characters in it (It is represented as “”).

numeric
expression

An expression whose evaluation returns a
numeric value. This may be an integer, a
single-precision or a double-precision value.

numeric
keypad

The section on the right of the keyboard
dedicated to numbers, arithmetic symbols,
cursor movement keys, and some control
characters.

numeric
variable

A simple variable or array element whose
value is numeric; i.e. an integer, a single
precision or a double precision, depending on
the type defined for the variable.

offset The number of bytes from a starting point to
some other point. For example, in GW BASIC
a memory address may be given as an offset
from the memory segment defined by the DEF
SEG statement.

option
switch

One of the options in the BASIC command
line switch specified with a slash (/) followed
by a character or by a character and a colon.

G-13

Glossary

overflow In an arithmetic operation, the generation of a
quantity beyond the capacity of a register or
location which is to receive the result.

overlay Programs too large for memory can be divided
into logical segments (or overlays).

parameter Value supplied to a command or language
statement that provides additional
information for the command or statement.
Used interchangeably with argument. An
“actual parameter” is a value that is
substituted for a “formal parameter” in a
given procedure or function when invoked.

pixel A graphics “point” addressable on the screen
by its coordinates (x,y). Also, the bits which
contain the information for that point.

port An access channel for data entry or exit.

program mode This mode is used to enter into memory a GW
BASIC program line. To tell GW BASIC the
line you are entering is part of a program, you
begin the line with a line number. A program
line is stored in memory when you press CR ,
but it is not executed. The lines are stored in
memory in line number sequence to form a
GW BASIC program. To execute the program
press RUN CR.

G-14

Glossary

prompt Message displayed on the screen to request the
user to do a specific action.

record A group of one or more consecutive fields on a
related subject. For example, an employee’s
payroll record. A file is a collection of records.

reset To reload an operating system from disk into
memory.

redirection You can redirect your GW BASIC input and
output by the BASIC command. Standard input
can be redirected to any file, standard output to
any file or device.

relative
coordinate

In graphics, x and y values that identify the
location of a pixel by specifying displacements
from some other pixel.

REM See “comment.”

reserved
word

A word that is used in GW BASIC for a special
purpose, such as a statement keyword, or a
function name, etc. It cannot be used as a
variable name.

raster A horizontal line of pixels on the screen.

G-15

Glossary

scan code

scroll

segment

sequential
access

single
precision

soft key

soft-key
display

stack

statement

A number (usually in hexadecimal form) that
identifies the position of a key on the keyboard,
keyboard.

To move all or part of the text display
vertically or horizontally so as to show
characters that do not fit on the screen.

A 64K-byte area of memory.

An access mode in which records are
processed in consecutive order, i.e. they are
read in the same order in which they were
written.

If a number is not an integer and contains 7 or
fewer digits it is a single precision number,
number.

Synonymous with function key.

The display of the soft-key values on the 25th
screen line.

An area of memory to temporarily store data
so that the last item stored is the first item to
be processed.

An instruction to the computer to perform
some sequence of operations.

G-16

Glossary

string
expression

An expression that returns a string value.

string
variable

A simple variable or array element whose
value is a string.

subroutine A section of a GW BASIC program which is
called by a GOSUB or ON...GOSUB
statement. At the end of the execution of a
subroutine, control is returned to the first
statement following the most recent GOSUB
(or ON... GOSUB) that has been executed.

subscript A positive integer number that identifies the
position of an element in an array.

window
A rectangular portion of the screen where text
is output. It may be defined by a VIEW PRINT
or a WIDTH statement.

trap A special form of a conditional breakpoint
that is activated by an event to be intercepted.
It also refers to the action to be taken after the
interception.

G-17

Glossary

type of
variable

Indicates whether the variable is a string or a
numeric variable and (if numeric) if it is an
integer, a single-precision, or a double
precision variable. The type of variable may be
set by a DEF (INT, SNG, DBL, OR STR)
statement, or by a character definition tag at
the end of the variable name.

type of
expression

The type of expression is the data-type (string,
integer, single-precision, or double-precision) of
the resulting evaluation of the expression. It
depends on the type of its operands,
operands.

typewriter
keyboard

The central section of the keyboard that is
used as a standard typewriter keyboard.

user
function

A function that the user must define before it
is called (see DEF FN statement).

variable A named data item whose values may change
during program execution.

variable
length
record

A record whose length is independent of the
length of other records in the file.

vector A one-dimensional array.

G-18

Glossary

viewport

wildcard

window

A rectangular portion of the screen onto which
window contents are mapped. A viewport is
defined by a VIEW statement to display both
graphics and text.

A special symbol used to represent any single
character (?) or any string of characters (*) in
a filename.

A rectangular portion of the screen onto which
text may be displayed.

G-19

Index

ABS Function
Accessing A Sequential
File

Adding Data to A
Sequential File

An Exercise in
Communication I/O

Arc, Ellipses
Arithmetic Operators
Array Variables
ASC Function
ASCII CODES
Assembly Language
Subroutines

ATN Function
AUTO Command
Automatic Line
Numbering

7-2

4-26

4-27

6- 7
5- 18

3-15
3-9
7- 3

A-2

6- 1
7- 4
7-5

2-28

BASIC Command 7-110
BEEP Statement 7-7
BINARY TO
HEXADECIMAL
CONVERSION TABLE A-ll

BLOAD Command 7-8
BSAVE Command 7-10

CALL Statement 7-12
Call Statement C-6
Calling Subroutine from
GW-BASIC C-6

CALLS Statement 7-13
Calls Statement C-6
CDBL Function 7-14

CHAIN Statement 7-15
Character Set B-7
CHDIR Command 7-20
CHR$ Function 7-21
CINT Function 7-22
CIRCLE Statement 7-23
CLEAR Command 7-28
CLOSE Statement 7-30
CLS Statement 7-31
COLOR Statement 7-37
COLOR Statement 7-38
COLOR Statement, Text
Mode 7-33

COM(n) Statement 7-41
Commands For Program
Files 4-18

COMMON Statement 7-42
Communication I/O 6-3
Communication I/O
Functions 6-4

CONCATENATION D-5
Constants 3-2
CONT Command 7-47
Correcting the Current
Line 2-17

COS Function 7-49
Creating A Random Access
File 4-29

Creating A Sequential File
CSNG Function 7-50
CSRLIN Function 7-51
Current Directory 4-13
CVI,CVS,CVD Functions 7-52

DATA Statement 7-53
DATE$ Function and
Statement 7-54

Declaration Characters B-3
DEF FN Statement 7-57

Index

DEF SEG Statement 7-60
DEF USR Statement 7-61
DEFINT/SNG/DBL/STR
Statements 7-62

DELETE Command 7-63
DIM Statement 7-64
Directory Paths 4-9
Displaying Points 5-19
Double Precision 3-5
DRAW Statement 7-70
Drawing and Coloring
Lines 5-20

Extended ASCII CODES A-8

EDIT Command 7-72
END Statement 7-73
Entering A Program 2-26
ENVIRON Statement 7-74
ENVIRON$ Function 7-77
EOF Function 7-78
ERASE Statement 7-80
ERDEV and ERDEV$
Functions 7-81

ERR and ERL
Functions 7-82

Error Messages E-l
ERROR Statement 7-85
Executing A Program 2-32
EXP Function 7-87
Expressions and
Operators 3-14

FIELD Statement 7-88
FILE I/O D-ll
File Numbers 4-4
FILES Command 7-92
FIX Function 7-94
FOR...NEXT
Statements 7-95

FRE Function 7-99
Function Keys 2-5
Functional Operators 3-24
Functions, derived A-8

GENERAL B-l
GET (COM files)
Statement 7-100

GET (Files) Statement 7-101
GET (Graphics)
Statement 7-103

GOSUB...RETURN
Statement 7-106

GOTO Statement 7-109
GRAPHICS D-12
Graphics Mode 5-7
Guide to Error Messages E-2
GW BASIC, INVOKING 7-110

HEX$ Function
HEXADECIMAL
CONVERSION
TABLES

High Resolution
Graphics

High Resolution Mode
How MS-DOS Keeps
Track of Your Files

HOW VARIABLES ARE
STORED

7-118

A-10

7-39
5-10

4-3

G-2

IF STATEMENT
SEQUENCE

IF...GOTO...ELSE
Statements

IF...THEN...ELSE
Statements

IF...THEN[...ELSE]
Immediate Mode
Initialization Procedure
INKEY$ Function
INP Function
INPUT Statement
INPUT$ Function
Statement
INSTR Function

E-3

7-119

7-119
D-10

2-3
2-2

7-123
7-125
7-128
7-130
7-127
7-132

Index

INT Function 7-134
Integer Division 3-17
Interrupts 2-38
IOCTL Statement 7-135
IOCTL$ Function 7-138

KEY Statement 7-140
KEY(n) Statement 7-146
Keyboard 2-4
KILL Command 7-148

LCOPY Statement 7-149
Leaving GW-BASIC 2-2
LEFT$ Function 7-150
LEN Function 7-151
LENGTH OF STRINGS F-l
LET Statement 7-152
Line Format B-5
LINE INPUT
Statement 7-157

LINE INPUT#
Statement 7-160

LINE Statement 7-153
LIST Command 7-161
Listing A Program 2-29
LLIST Command 7-163
Loading A Program 2-31
LOAD Command 7-164
LOC Function 7-165
LOCATE (Graphics) 7-167
LOCATE (Text)
Statement 7-171

LOF Function 7-175
LOG Function 7-176
LOGIC CONTROL E-3
Logical Operators 3-21
LPOS Function 7-177
LPRINT Statement 7-178
LSET and RSET
Statements 7-180

Major Features 1-3
MAT Functions
Medium Resolution

D-6

Graphics 7-37
Medium Resolution Mode 5-8
Memory Allocation C-2
MEMORY MAP C-8
MERGE Command
MID$ Function and

7-181

Statement 7-182
MKDIR Command
MKI$,MKS$,MKD$

7-186

Functions 7-188
Modes of Operations
Modifying Program

2-3

Lines 2-20
Modulus Arithmetic
MULTIPLE

3-17

ASSIGNMENTS
MULTIPLE

D-7

STATEMENTS D-8

NAME Command 7-189
Naming Devices 4-7
Naming Files 4-5
NEW Command 7-191
Numeric Constant Format 3-5
Numeric Keypad 2-11

OCT$ Function 7-192
ON COM(n) Statement 7-193
ON ERROR Statement
ON...GOSUB and

7-195

ON...GOTO
Statements 7-197

ON KEY(n) Statement
ON PLAY(n)

7-198

Statement
ON STRIG(n)

7-201

Statement 7-204
ON TIMER Statement 7-205

Index

OPEN COM Statement 8-214
OPEN Statement 7-207
Opening
Communications Files 6-2

OPTION BASE
Statement 8-217

OUT Statement 8-218
Overflow 3-18

PAINT Statement 7-220
PEEK Function 7-226
PEEKs and POKEs D-9
PLAY Statement 7-227
PLAY(n) Function 7-231
PLAY {on|offlstop}
PMAP Function 7-233
POINT Function 7-235
POKE Statement 7-237
POS Function 7-238
PRESET Statement 7-239
PRINT Statement 7-240
PRINT USING
Statement 7-243

PRINT# and PRINT#
USING
Statements 7-249

Program Mode 2-2
Protected Files 4-20
PSET Statement 7-252
PUT (COM files)
Statement 7-253

PUT (Files) Statement 7-254
PUT (Graphics)
Statement 7-256

Random Access Disk Data
Files 4-28

Random Access Files 4-11
RANDOMIZE
Statement 7-261

READ Statement 7-262
Rectangles, Objects,
Circles 5-8

Relational Operators
REM Statement
RENUM Command
Reserved Words
RESET Command
RESTORE Statement
RESUME Statement
RETURN Statement
See GOSUB...RETURN
with event trapping

Returning a Numeric
Value

Returning a String
Value

RIGHTS Function
RMDIR Command
RND Function
RUN Command
Running A Sample
Program

3-19
7-264
7-266

B-9
7-268
7-269
7-270

7-106
C-28

8-13

8-13
7-271
7-272
7-274
7-276

2-35

SAVE Command 7-278
Saving A Program 2-30
SCAN CODES C-3
Screen Coordinates 5-16
SCREEN Function 7-280
SCREEN Statement 7-282
Selecting the Screen
Attributes 5-2

Sequential Disk Data
Files 4-21

Sequential Files 4-2
SGN Function 7-287
SIN Function 7-288
Single Precision 3-5
SOUND Statement 7-289
Space Requirements 3-4
SPACES Function 7-292
SPC Function 7-293
Special Screen Editor
Keys 2-6

SQR Function 7-294
STANDARD
KEYBOARD C-3

Index

Statements 8-4
STICK Statement 7-295
STOP Statement
STRIG Statement
and Function

STRIG(n) Statement
STR$ Function
STRING

7-296

7-297
7-299
7-300

Using Your System As
A Calculator

USR Function
USR; calling

2-23
7-312
C-16

DIMENSIONING D-3
String Operators 3-25
STRINGS Function 7-302 VAL Function 7-302
SUBSTRINGS D-4 Variable Names 3-3
Super Resolution Variables 3-7
Graphics 7-39 VARPTR Function 7-315

Super Resolution Mode 5-12 VARPTRS 7-318
SWAP Statement 7-303 VIEW Statement 7-320
Syntax Conventions B-2 VIEW PRINT
SYSTEM Command 7-304 Statement 7-326

View, subsets 5-17

TAB Function 7-305
■■■■ t

TABLES A-l WAIT Statement 7-315
TAN Function 7-306 WHILE...WEND
Text Mode 5-4 Statements 7-328
The GW-BASIC Screen WIDTH Statement 7-318
Editor 2-12 WINDOW Statement 7-324

The Input$ Function For COM Window, regions 5-18
Files 6-2 WRITE Statement 7-344
The Keyboard
TIMES Function and

C-3, 2-6 WRITE# Statement 7-345

Statement 7-307
TIMER Function
TROFF/TRON

7-309

Commands 7-311
Type Conversion 3-11
Typewriter Keyboard 2-6

